Intraseasonal Variability of the Equatorial Undercurrent in the Indian Ocean

Gengxin Chen State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China, and Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Gengxin Chen in
Current site
Google Scholar
PubMed
Close
,
Weiqing Han Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Weiqing Han in
Current site
Google Scholar
PubMed
Close
,
Yuanlong Li Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, and Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Yuanlong Li in
Current site
Google Scholar
PubMed
Close
,
Jinglong Yao State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Jinglong Yao in
Current site
Google Scholar
PubMed
Close
, and
Dongxiao Wang State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Dongxiao Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

By analyzing in situ observations and conducting a series of ocean general circulation model experiments, this study investigates the physical processes controlling intraseasonal variability (ISV) of the Equatorial Undercurrent (EUC) of the Indian Ocean. ISV of the EUC leads to time-varying water exchanges between the western and eastern equatorial Indian Ocean. For the 2001–14 period, standard deviations of the EUC transport variability are 1.92 and 1.77 Sv (1 Sv ≡ 106 m3 s−1) in the eastern and western basins, respectively. The ISV of the EUC is predominantly caused by the wind forcing effect of atmospheric intraseasonal oscillations (ISOs) but through dramatically different ocean dynamical processes in the eastern and western basins. The stronger ISV in the eastern basin is dominated by the reflected Rossby waves associated with intraseasonal equatorial zonal wind forcing. It takes 20–30 days to set up an intraseasonal EUC anomaly through the Kelvin and Rossby waves associated with the first and second baroclinic modes. In the western basin, the peak intraseasonal EUC anomaly is generated by the zonal pressure gradient force, which is set up by radiating equatorial Kelvin and Rossby waves induced by the equatorial wind stress. Directly forced and reflected Rossby waves from the eastern basin propagate westward, contributing to intraseasonal zonal current near the surface but having weak impact on the peak ISV of the EUC.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-18-0151.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dongxiao Wang, dxwang@scsio.ac.cn

Abstract

By analyzing in situ observations and conducting a series of ocean general circulation model experiments, this study investigates the physical processes controlling intraseasonal variability (ISV) of the Equatorial Undercurrent (EUC) of the Indian Ocean. ISV of the EUC leads to time-varying water exchanges between the western and eastern equatorial Indian Ocean. For the 2001–14 period, standard deviations of the EUC transport variability are 1.92 and 1.77 Sv (1 Sv ≡ 106 m3 s−1) in the eastern and western basins, respectively. The ISV of the EUC is predominantly caused by the wind forcing effect of atmospheric intraseasonal oscillations (ISOs) but through dramatically different ocean dynamical processes in the eastern and western basins. The stronger ISV in the eastern basin is dominated by the reflected Rossby waves associated with intraseasonal equatorial zonal wind forcing. It takes 20–30 days to set up an intraseasonal EUC anomaly through the Kelvin and Rossby waves associated with the first and second baroclinic modes. In the western basin, the peak intraseasonal EUC anomaly is generated by the zonal pressure gradient force, which is set up by radiating equatorial Kelvin and Rossby waves induced by the equatorial wind stress. Directly forced and reflected Rossby waves from the eastern basin propagate westward, contributing to intraseasonal zonal current near the surface but having weak impact on the peak ISV of the EUC.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-18-0151.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dongxiao Wang, dxwang@scsio.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 369.88 KB)
Save
  • Atlas, R., J. Ardizzone, and R. N. Hoffman, 2008: Application of satellite surface wind data to ocean wind analysis. Proc. SPIE, 7087, 70870B, https://doi.org/10.1117/12.795371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruce, J., 1973: Equatorial undercurrent in the western Indian Ocean during the southwest monsoon. J. Geophys. Res., 78, 63866394, https://doi.org/10.1029/JC078i027p06386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G. X., W. Q. Han, Y. L. Li, D. X. Wang, and M. J. McPhaden, 2015a: Seasonal-to-interannual time-scale dynamics of the equatorial undercurrent in the Indian Ocean. J. Phys. Oceanogr., 45, 15321553, https://doi.org/10.1175/JPO-D-14-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G. X., W. Q. Han, Y. L. Li, D. X. Wang, and T. Shinoda, 2015b: Intraseasonal variability of upwelling in the equatorial eastern Indian Ocean. J. Geophys. Res. Oceans, 120, 75987615, https://doi.org/10.1002/2015JC011223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G. X., W. Q. Han, Y. L. Li, and D. X. Wang, 2016: Interannual variability of equatorial eastern Indian Ocean upwelling: Local versus remote forcing. J. Phys. Oceanogr., 46, 789807, https://doi.org/10.1175/JPO-D-15-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G. X., W. Q. Han, Y. L. Li, M. J. McPhaden, J. Chen, W. Wang, and D. X. Wang, 2017: Strong intraseasonal variability of meridional currents near 5°N in the eastern Indian Ocean: Characteristics and causes. J. Phys. Oceanogr., 47, 979998, https://doi.org/10.1175/JPO-D-16-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W. Q., 2005: Origins and dynamics of the 90-day and 30–60-day variations in the equatorial Indian Ocean. J. Phys. Oceanogr., 35, 708728, https://doi.org/10.1175/JPO2725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W. Q., J. P. McCreary, D. L. T. Anderson, and A. J. Mariano, 1999: Dynamics of the eastern surface jets in the equatorial Indian Ocean. J. Phys. Oceanogr., 29, 21912209, https://doi.org/10.1175/1520-0485(1999)029<2191:DOTESJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W. Q., D. M. Lawrence, and P. J. Webster, 2001: Dynamical response of equatorial Indian Ocean to intraseasonal winds: Zonal flow. Geophys. Res. Lett., 28, 42154218, https://doi.org/10.1029/2001GL013701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iskandar, I., Y. Masumoto, and K. Mizuno, 2009: Subsurface equatorial zonal current in the eastern Indian Ocean. J. Geophys. Res., 114, C06005, https://doi.org/10.1029/2008JC005188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kindle, J. C., and J. D. Thompson, 1989: The 26- and 50-day oscillations in the western Indian Ocean: Model results. J. Geophys. Res., 94, 47214736, https://doi.org/10.1029/JC094iC04p04721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knauss, J. A., and B. A. Taft, 1964: Equatorial undercurrent of the Indian Ocean. Science, 143, 354356, https://doi.org/10.1126/science.143.3604.354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knox, R., 1976: On a long series of measurements of Indian Ocean equatorial currents near Addu Atoll. Deep-Sea Res. Oceanogr. Abstr., 23, 211221, https://doi.org/10.1016/0011-7471(76)91325-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, T. Shinoda, C. Wang, R. C. Lien, J. N. Moum, and J. W. Wang, 2013: Effects of the diurnal cycle in solar radiation on the tropical Indian Ocean mixed layer variability during wintertime Madden–Julian oscillations. J. Geophys. Res. Oceans, 118, 49454964, https://doi.org/10.1002/jgrc.20395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, T. Shinoda, C. Wang, M. Ravichandran, and J. W. Wang, 2014: Revisiting the wintertime intraseasonal SST variability in the tropical South Indian Ocean: Impact of the ocean interannual variation. J. Phys. Oceanogr., 44, 18861907, https://doi.org/10.1175/JPO-D-13-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, and T. Lee, 2015: Intraseasonal sea surface salinity variability in the equatorial Indo–Pacific Ocean induced by Madden–Julian oscillations. J. Geophys. Res. Oceans, 120, 22332258, https://doi.org/10.1002/2014JC010647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, W. Wang, M. Ravichandran, T. Lee, and T. Shinoda, 2017: Bay of Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 2. Impact on SST and convection. J. Geophys. Res. Oceans, 122, 43124328, https://doi.org/10.1002/2017JC012692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Luyten, J. R., and D. H. Roemmich, 1982: Equatorial currents at semi-annual period in the Indian Ocean. J. Phys. Oceanogr., 12, 406413, https://doi.org/10.1175/1520-0485(1982)012<0406:ECASAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., H. Hase, Y. Kuroda, H. Matsuura, and K. Takeuchi, 2005: Intraseasonal variability in the upper layer currents observed in the eastern equatorial Indian Ocean. Geophys. Res. Lett., 32, L02607, https://doi.org/10.1029/2004GL021896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1982: Variability in the central equatorial Indian Ocean. I: Ocean dynamics. J. Mar. Res., 40, 157176.

  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480, https://doi.org/10.1175/2008BAMS2608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, D. W., and J. P. McCreary, 1990: Excitation of intermediate-frequency equatorial waves at a western ocean boundary: With application to observations from the Indian Ocean. J. Geophys. Res., 95, 52195231, https://doi.org/10.1029/JC095iC04p05219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murty, V. S. N., and Coauthors, 2002: First results of Indian current meter moorings along the equator: Vertical current structure variability at equator, 93°E during February–December 2000. Proc. Sixth Pan Ocean Remote Sensing Conf., Bali, Indonesia, Scientific Organizing Committee of PORSEC, 25–28, http://drs.nio.org/drs/handle/2264/1406.

  • Nagura, M., and M. J. McPhaden, 2010: Dynamics of zonal current variations associated with the Indian Ocean dipole. J. Geophys. Res., 115, C11026, https://doi.org/10.1029/2010JC006423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nyadjro, E., and M. J. McPhaden, 2014: Variability of zonal currents in the eastern equatorial Indian Ocean on seasonal to interannual time scales. J. Geophys. Res. Oceans, 119, 79697986, https://doi.org/10.1002/2014JC010380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, Q., Y. Li, F. Wang, L. Song, C. Liu, and F. Zhai, 2018: Seasonality of the Mindanao Current/Undercurrent system. J. Geophys. Res. Oceans, 123, 11051122, https://doi.org/10.1002/2017JC013474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reppin, J., F. A. Schott, J. Fischer, and D. Quadfasel, 1999: Equatorial currents and transports in the upper central Indian Ocean: Annual cycle and interannual variability. J. Geophys. Res., 104, 15 49515 514, https://doi.org/10.1029/1999JC900093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., and J. P. McCreary, 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1123, https://doi.org/10.1016/S0079-6611(01)00083-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senan, R., D. Sengupta, and B. N. Goswami, 2003: Intraseasonal “monsoon jets” in the equatorial Indian Ocean. Geophys. Res. Lett., 30, 1750, https://doi.org/10.1029/2003GL017583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., R. Senan, and B. N. Goswami, 2001: Origin of intraseasonal variability of circulation in the tropical central Indian Ocean. Geophys. Res. Lett., 28, 12671270, https://doi.org/10.1029/2000GL012251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., R. Senan, B. N. Goswami, and J. Vialard, 2007: Intraseasonal variability of equatorial Indian Ocean zonal currents. J. Climate, 20, 30363055, https://doi.org/10.1175/JCLI4166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shankar, D., J. McCreary, W. Han, and S. Shetye, 1996: Dynamics of the East India Coastal Current: 1. Analytic solutions forced by interior Ekman pumping and local alongshore winds. J. Geophys. Res., 101, 13 97513 991, https://doi.org/10.1029/96JC00559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., and W. Han, 2005: Influence of Indian Ocean dipole on atmospheric subseasonal variability. J. Climate, 18, 38913909, https://doi.org/10.1175/JCLI3510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., W. Han, L. Zamudio, R.-C. Lien, and M. Katsumata, 2017: Remote ocean response to the Madden–Julian oscillation during the DYNAMO field campaign: Impact on Somali Current system and Seychelles–Chagos thermocline ridge. Atmosphere, 8, 171, https://doi.org/10.3390/atmos8090171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swapna, P., and R. Krishnan, 2008: Equatorial undercurrents associated with Indian Ocean dipole events during contrasting summer monsoons. Geophys. Res. Lett., 35, L14S04, https://doi.org/10.1029/2008GL033430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallcraft, A., E. Metzger, and S. Carroll, 2009: Software design description for the Hybrid Coordinate Ocean Model (HYCOM), version 2.2. Naval Research Lab Tech. Memo., 157 pp., https://apps.dtic.mil/dtic/tr/fulltext/u2/a494779.pdf.

    • Crossref
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodberry, K. E., M. E. Luther, and J. J. O’Brien, 1989: The wind-driven seasonal circulation in the southern tropical Indian Ocean. J. Geophys. Res., 94, 17 98518 002, https://doi.org/10.1029/JC094iC12p17985.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4286 2997 171
PDF Downloads 962 159 14