Three-Dimensional Baroclinic Eddies in the Ocean: Evolution, Propagation, Overall Structures, and Angular Models

Guanghong Liao College of Oceanography, Hohai University, Nanjing, and Laboratory for Regional Oceanography and Numerical Modeling, Pilot National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Guanghong Liao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4646-7808
,
Xiaohua Xu College of Oceanography, Hohai University, Nanjing, China

Search for other papers by Xiaohua Xu in
Current site
Google Scholar
PubMed
Close
,
Changming Dong College of Marine Science, Nanjing University of Information Science and Technology, Nanjing, China, and Department of Atmospheric and Oceanic Science, University of California, Los Angeles, Los Angeles, California

Search for other papers by Changming Dong in
Current site
Google Scholar
PubMed
Close
,
Haijin Cao College of Oceanography, Hohai University, Nanjing, China

Search for other papers by Haijin Cao in
Current site
Google Scholar
PubMed
Close
, and
Tao Wang College of Oceanography, Hohai University, Nanjing, China

Search for other papers by Tao Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The evolution and dynamics of an initially Gaussian baroclinic vortex embedded in a resting stratification environment are investigated with a three-dimensional primitive equation model. The vortex evolution process strongly depends on multiple parameters. Particularly, the effects of the gradient of planetary vorticity, nonlinearity, and friction have been studied to evaluate their roles. Comparisons with previous results from a simplified model are made. We particularly focus on interactions between vortices at different levels to understand their evolution. Additionally, a set of numerical simulations has been performed to examine the role of parameter space (Froude–Rossby number) on the evolution of eddies. The evolution and propagation of the vortex is affected by the planetary vorticity gradient; nonlinearity accelerates the transfer of energy from low to high angular mode and speeds up the propagation of eddies. A new finding is that a “double dipole” structure is observed with the development of a vortex, which is located in the core and edge regions, respectively. Only eddies in a finite depth range can maintain synchronous motion, and the dispersive translation paths in all levels imply that initially aligned eddies finally develop into misaligned structures and lead the tilted axis. In contrast to the results in a previous study, eddies have a southward drift irrespective of the vortex polarity. The eddies in the upper level maintain strong stability; in the middle depths, eddies decay rapidly where they form mixed barotropic and baroclinic instabilities. The energy budget analysis demonstrates the complex energy conversion between eddy and angular modes. The Burger number is the most important factor affecting the pattern of eddy evolution.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guanghong Liao, liaogh@hhu.edu.cn

Abstract

The evolution and dynamics of an initially Gaussian baroclinic vortex embedded in a resting stratification environment are investigated with a three-dimensional primitive equation model. The vortex evolution process strongly depends on multiple parameters. Particularly, the effects of the gradient of planetary vorticity, nonlinearity, and friction have been studied to evaluate their roles. Comparisons with previous results from a simplified model are made. We particularly focus on interactions between vortices at different levels to understand their evolution. Additionally, a set of numerical simulations has been performed to examine the role of parameter space (Froude–Rossby number) on the evolution of eddies. The evolution and propagation of the vortex is affected by the planetary vorticity gradient; nonlinearity accelerates the transfer of energy from low to high angular mode and speeds up the propagation of eddies. A new finding is that a “double dipole” structure is observed with the development of a vortex, which is located in the core and edge regions, respectively. Only eddies in a finite depth range can maintain synchronous motion, and the dispersive translation paths in all levels imply that initially aligned eddies finally develop into misaligned structures and lead the tilted axis. In contrast to the results in a previous study, eddies have a southward drift irrespective of the vortex polarity. The eddies in the upper level maintain strong stability; in the middle depths, eddies decay rapidly where they form mixed barotropic and baroclinic instabilities. The energy budget analysis demonstrates the complex energy conversion between eddy and angular modes. The Burger number is the most important factor affecting the pattern of eddy evolution.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guanghong Liao, liaogh@hhu.edu.cn
Save
  • Adem, J., 1956: A series solution for the barotropic vorticity equation and its application in the study of atmospheric vortices. Tellus, 8, 364372, https://doi.org/10.3402/tellusa.v8i3.9010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beckers, M., H. J. H. Clercx, G. J. F. Van Heijst, and R. Verzicco, 2003: Evolution and instability of monopolar vortices in a stratified fluid. Phys. Fluids, 15, 10331045, https://doi.org/10.1063/1.1557528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benilov, E. S., 1996: Beta-induced translation of strong isolated eddies. J. Phys. Oceanogr., 26, 22232229, https://doi.org/10.1175/1520-0485(1996)026<2223:BITOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A. S., L. Armi, and I. Ambar, 1997: Lagrangian observations of meddy formation during a Mediterranean undercurrent seeding experiment. J. Phys. Oceanogr., 27, 25452575, https://doi.org/10.1175/1520-0485(1997)027<2545:LOOMFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, X., 2001: Hydrodynamical modeling of oceanic vortices. Surv. Geophys., 22, 179263, https://doi.org/10.1023/A:1013779219578.

  • Castelao, R. M., 2014: Mesoscale eddies in the South Atlantic Bight and the Gulf Stream Recirculation region: Vertical structure. J. Geophys. Res., 119, 20482065, https://doi.org/10.1002/2014JC009796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, S.-Y., and P.-T. Shaw, 1996: Initialization, asymmetry, and spindown of Arctic eddies. J. Phys. Oceanogr., 26, 20762092, https://doi.org/10.1175/1520-0485(1996)026<2076:IAASOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. Schlax, R. Samelson, and R. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/J.POCEAN.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and Coauthors, 2015: Observed deep energetic eddies by seamount wake. Sci. Rep., 5, 17416, https://doi.org/10.1038/SREP17416.

  • Cushman-Roisin, B., and B. Jean-Marie, 2011: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. 2nd ed. Academic Press, 875 pp.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., B. Tang, and E. Chassignet, 1990: Westward motion of mesoscale eddies. J. Phys. Oceanogr., 20, 758768, https://doi.org/10.1175/1520-0485(1990)020<0758:WMOME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., T. Mavor, F. Nencioli, S. Jiang, Y. Uchiyama, J. C. McWilliams, T. Dickey, M. Ondrusek, H. Zhang, and D. K. Clark, 2009: An oceanic cyclonic eddy on the lee side of Lanai Island, Hawai’i. J. Geophys. Res., 114, C10008, https://doi.org/10.1029/2009JC005346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Early, J. J., R. M. Samelson, and D. B. Chelton, 2011: The evolution and propagation of quasigeostrophic ocean Eddies. J. Phys. Oceanogr., 41, 15351555, https://doi.org/10.1175/2011JPO4601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiorino, M., and R. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975990, https://doi.org/10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., 1977: The application of linear quasigeostrophic dynamics to gulf stream rings. J. Phys. Oceanogr., 7, 365379,https://doi.org/10.1175/1520-0485(1977)007<0365:TAOLQD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., V. D. Larichev, J. C. McWilliams, and G. M. Reznik, 1980: The dynamics of baroclinic and barotropic solitary eddies. Dyn. Atmos. Oceans, 5, 141, https://doi.org/10.1016/0377-0265(80)90009-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fringer, O. B., M. Gerritsen, and R. L. Street, 2006: An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Modell., 14, 139173, https://doi.org/10.1016/j.ocemod.2006.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keppler, L., S. Cravatte, A. Chaigneau, C. Pegliasco, L. Gourdeau, and A. Singh, 2018: Observed characteristics and vertical structure of mesoscale eddies in the southwest tropical Pacific. J. Geophys. Res. Oceans, 123, 27312756. https://doi.org/10.1002/2017JC013712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1983: On the motion of isolated lenses on a beta-plane. J. Phys. Oceanogr., 13, 368376, https://doi.org/10.1175/1520-0485(1983)013<0368:OTMOIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krauss, W., R. Döscher, A. Lehmann, and T. Viehoff, 1990: On eddy scales in the eastern and northern North Atlantic Ocean as a function of latitude. J. Geophys. Res., 95, 18 04918 056, https://doi.org/10.1029/JC095iC10p18049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J., and G. Flierl, 1979: On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr., 9, 11551182, https://doi.org/10.1175/1520-0485(1979)009<1155:OTEOIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mied, R., and G. J. Lindemann, 1979: The propagation and evolution of cyclonic Gulf Stream rings. J. Phys. Oceanogr., 9, 11831206, https://doi.org/10.1175/1520-0485(1979)009<1183:TPAEOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morel, Y., and J. McWilliams, 1997: Evolution of isolated interior vortices in the ocean. J. Phys. Oceanogr., 27, 727748, https://doi.org/10.1175/1520-0485(1997)027<0727:EOIIVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nof, D., 1981: On the beta-induced movement of isolated baroclinic eddies. J. Phys. Oceanogr., 11, 16621672, https://doi.org/10.1175/1520-0485(1981)011<1662:OTIMOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nycander, J., 1994: Steady vortices in plasmas and geophysical flows. Chaos, 4, 253267, https://doi.org/10.1063/1.166006.

  • Nycander, J., and G. G. Sutyrin, 1992: Steadily translating anticyclones on the beta plane. Dyn. Atmos. Oceans, 16, 473498, https://doi.org/10.1016/0377-0265(92)90002-B.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlandi, P., and G. F. Carnevale, 1999: Evolution of isolated vortices in a rotating fluid of finite depth. J. Fluid Mech., 381, 239269, https://doi.org/10.1017/S0022112098003693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pakyari, A. R., and J. Nycander, 1996: Steady two-layer vortices on the beta-plane. Dyn. Atmos. Oceans, 25, 6786, https://doi.org/10.1016/S0377-0265(96)00475-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perfect, B., N. Kumar, and J. J. Riley, 2018: Vortex structures in the wake of an idealized seamount in rotating, stratified flow. Geophys. Res. Lett., 45, 90989105, https://doi.org/10.1029/2018GL078703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reznik, G., R. Grimshaw, and E. Benilov, 2000: On the long-term evolution of an intense localized divergent vortex on the beta-plane. J. Fluid Mech., 422, 249280, https://doi.org/10.1017/S0022112000001750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 2001: Mesoscale eddies. Encyclopedia of Ocean Science, M. Steele, K. K. Turekian, and S. A. Thorpe, Eds., Academic Press, 19821992.

    • Search Google Scholar
    • Export Citation
  • Richardson, P. L., 1993: Tracking ocean eddies. Amer. Sci., 81, 261271.

  • Rossby, C. G., 1948: On displacements and intensity changes of atmospheric vortices. J. Mar. Res., 7, 175187.

  • Schär, C., and D. R. Durran, 1997: Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J. Atmos. Sci., 54, 534554, https://doi.org/10.1175/1520-0469(1997)054<0534:VFAVSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. C., and H. O. Reid, 1982: A numerical study of nonfrictional decay of mesoscale eddies. J. Phys. Oceanogr., 12, 244, https://doi.org/10.1175/1520-0485(1982)012<0244:ANSOND>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. C., and J. J. O’Brien, 1983: The interaction of a two-layer isolated mesoscale eddy with bottom topography. J. Phys. Oceanogr., 13, 16811697, https://doi.org/10.1175/1520-0485(1983)013<1681:TIOATL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stegner, A., and D. G. Dritschel, 2000: A numerical investigation of the stability of isolated shallow-water vortices. J. Phys. Oceanogr., 30, 25622573, https://doi.org/10.1175/1520-0485(2000)030<2562:ANIOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutyrin, G. G., and W. K. Dewar, 1992: Almost symmetric solitary eddies in a two-layer ocean. J. Fluid Mech., 238, 633656, https://doi.org/10.1017/S0022112092001848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutyrin, G., J. Hesthaven, J. Lynov, and J. Rasmussen, 1994: Dynamical properties of vortical structures on the beta-plane. J. Fluid Mech., 268, 103131, https://doi.org/10.1017/S002211209400128X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P., and T. M. Özgökmen, 2016: Spiral inertial waves emitted from geophysical vortices. Ocean Modell., 99, 2242, https://doi.org/10.1016/j.ocemod.2016.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., P. Li, S. P. Xie, Q. Liu, C. Liu, and W. Gao, 2016: Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific. Nat. Commun., 7, 10505, https://doi.org/10.1038/NCOMMS10505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., W. Wang, and B. Qiu, 2014: Oceanic mass transport by mesoscale eddies. Science, 345, 322324, https://doi.org/10.1126/science.1252418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., J. Tian, B. Qiu, W. Zhao, P. Chang, D. Wu, and X. Wan, 2016: Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the south china sea. Sci. Rep., 6, 24349, https://doi.org/10.1038/srep24349.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 996 244 17
PDF Downloads 742 188 16