Tracer Transport within Abyssal Mixing Layers

R. M. Holmes School of Mathematics and Statistics, Climate Change Research Centre, and the Australian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by R. M. Holmes in
Current site
Google Scholar
PubMed
Close
,
Casimir de Lavergne School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Casimir de Lavergne in
Current site
Google Scholar
PubMed
Close
, and
Trevor J. McDougall School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Trevor J. McDougall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mixing layers near sloped topography in the abyss are thought to play a critical role in the global overturning circulation. Yet the behavior of passive tracers within sloping boundary layer systems has received little attention, despite the extensive use of tracer observations to understand abyssal circulation. Here, we investigate the behavior of a passive tracer released near a sloping boundary within a flow governed by one-dimensional boundary layer theory. The spreading rate of the tracer across isopycnals is influenced by factors such as the bottom-intensification of mixing, the dipole of upwelling (in the boundary layer) and downwelling (in the outer mixing layer), and along-isopycnal diffusion. For isolated near-boundary tracer releases, the bulk diffusivity, proportional to the rate of increase of the variance of the tracer distribution in buoyancy space, is much less than what would be expected from averaging the diapycnal diffusivity over the tracer patch. This stems from the presence of the bottom boundary that prevents tracer diffusion through it. Furthermore, when along-isopycnal diffusion is weak, the boundary tends to drive the tracer up the slope toward less dense fluid on average due to asymmetries between boundary layer and interior flows. With strong along-isopycnal diffusion this upslope movement is reduced, while at the same time the average diapycnal spreading rate is increased due to a reduced influence of the bottom boundary. These results have implications for what can be learned about the characteristics of mixing near sloping boundaries from past and future tracer-release experiments.

Current affiliation: LOCEAN Laboratory, Sorbonne Université-CNRS-IRD-MNHN, Paris, France.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: R. M. Holmes, ryan.holmes@unsw.edu.au

Abstract

Mixing layers near sloped topography in the abyss are thought to play a critical role in the global overturning circulation. Yet the behavior of passive tracers within sloping boundary layer systems has received little attention, despite the extensive use of tracer observations to understand abyssal circulation. Here, we investigate the behavior of a passive tracer released near a sloping boundary within a flow governed by one-dimensional boundary layer theory. The spreading rate of the tracer across isopycnals is influenced by factors such as the bottom-intensification of mixing, the dipole of upwelling (in the boundary layer) and downwelling (in the outer mixing layer), and along-isopycnal diffusion. For isolated near-boundary tracer releases, the bulk diffusivity, proportional to the rate of increase of the variance of the tracer distribution in buoyancy space, is much less than what would be expected from averaging the diapycnal diffusivity over the tracer patch. This stems from the presence of the bottom boundary that prevents tracer diffusion through it. Furthermore, when along-isopycnal diffusion is weak, the boundary tends to drive the tracer up the slope toward less dense fluid on average due to asymmetries between boundary layer and interior flows. With strong along-isopycnal diffusion this upslope movement is reduced, while at the same time the average diapycnal spreading rate is increased due to a reduced influence of the bottom boundary. These results have implications for what can be learned about the characteristics of mixing near sloping boundaries from past and future tracer-release experiments.

Current affiliation: LOCEAN Laboratory, Sorbonne Université-CNRS-IRD-MNHN, Paris, France.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: R. M. Holmes, ryan.holmes@unsw.edu.au
Save
  • Armi, L., 1978: Some evidence for boundary mixing in the deep ocean. J. Geophys. Res., 83, 19711979, https://doi.org/10.1029/JC083iC04p01971.

  • Banyte, D., D. A. Smeed, and M. M. Morales, 2018: The weakly stratified bottom boundary layer of the global ocean. J. Geophys. Res. Oceans, 123, 55875598, https://doi.org/10.1029/2018JC013754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baskaran, M., 2016: Radon: A geochemical and geophysical tracer in marine system. Radon: A Tracer for Geological, Geophysical and Geochemical Studies, Springer, 119–144, https://doi.org/10.1007/978-3-319-21329-3_6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burns, K. J., G. M. Vasil, J. S. Oishi, D. Lecoanet, and B. P. Brown, 2019: Dedalus: A flexible framework for numerical simulations with spectral methods. arXiv.org, https://arxiv.org/abs/1905.10388.

    • Search Google Scholar
    • Export Citation
  • Callies, J., 2018: Restratification of abyssal mixing layers by submesoscale baroclinic eddies. J. Phys. Oceanogr., 48, 19952010, https://doi.org/10.1175/JPO-D-18-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018: Dynamics of an abyssal circulation driven by bottom-intensified mixing on slopes. J. Phys. Oceanogr., 48, 12571282, https://doi.org/10.1175/JPO-D-17-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 1969: Diffusion in an Ekman layer. J. Atmos. Sci., 26, 414426, https://doi.org/10.1175/1520-0469(1969)026<0414:DIAEL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. Le Sommer, A. J. G. Nurser, and A. C. Naveira Garabato, 2016: On the consumption of Antarctic Bottom Water in the abyssal ocean. J. Phys. Oceanogr., 46, 635661, https://doi.org/10.1175/JPO-D-14-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, F. Roquet, R. M. Holmes, and T. J. McDougall, 2017: Abyssal ocean overturning shaped by seafloor distribution. Nature, 551, 181186, https://doi.org/10.1038/nature24472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dell, R. W., and L. J. Pratt, 2015: Diffusive boundary layers over varying topography. J. Fluid Mech., 769, 635653, https://doi.org/10.1017/jfm.2015.88.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., A. Mashayek, T. J. McDougall, M. Nikurashin, and J.-M. Campin, 2016: Turning ocean mixing upside down. J. Phys. Oceanogr., 46, 22392261, https://doi.org/10.1175/JPO-D-15-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1990: The role of secondary circulation in boundary mixing. J. Geophys. Res., 95, 31813188, https://doi.org/10.1029/JC095iC03p03181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1991: Marginal mixing theories. Atmos.–Ocean, 29, 313339, https://doi.org/10.1080/07055900.1991.9649407.

  • Garrett, C., 2001: An isopycnal view of near-boundary mixing and associated flows. J. Phys. Oceanogr., 31, 138142, https://doi.org/10.1175/1520-0485(2001)031<0138:AIVONB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., P. MacCready, and P. Rhines, 1993: Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech., 25, 291323, https://doi.org/10.1146/annurev.fl.25.010193.001451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gloor, M., A. Wüest, and D. M. Imboden, 2000: Dynamics of mixed bottom boundary layers and its implications for diapycnal transport in a stratified, natural water basin. J. Geophys. Res., 105, 86298646, https://doi.org/10.1029/1999JC900303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goudsmit, G.-H., F. Peeters, M. Gloor, and A. Wüest, 1997: Boundary versus internal diapycnal mixing in stratified natural waters. J. Geophys. Res., 102, 27 90327 914, https://doi.org/10.1029/97JC01861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and K. G. Lamb, 1990: On parameterizing vertical mixing of momentum in non-eddy resolving ocean models. J. Phys. Oceanogr., 20, 16341637, https://doi.org/10.1175/1520-0485(1990)020<1634:OPVMOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, https://doi.org/10.1029/JC094iC07p09686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., C. de Lavergne, and T. J. McDougall, 2018: Ridges, seamounts, troughs, and bowls: Topographic control of the dianeutral circulation in the abyssal ocean. J. Phys. Oceanogr., 48, 861882, https://doi.org/10.1175/JPO-D-17-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inall, M. E., 2009: Internal wave induced dispersion and mixing on a sloping boundary. Geophys. Res. Lett., 36, L05604, https://doi.org/10.1029/2008GL036849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivey, G. N., 1987a: Boundary mixing in a rotating, stratified fluid. J. Fluid Mech., 183, 2544, https://doi.org/10.1017/S0022112087002507.

  • Ivey, G. N., 1987b: The role of boundary mixing in the deep ocean. J. Geophys. Res., 92, 11 87311 878, https://doi.org/10.1029/JC092iC11p11873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2017a: The internal-wave-driven meridional overturning circulation. J. Phys. Oceanogr., 47, 26732689, https://doi.org/10.1175/JPO-D-16-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2017b: Internal wave-driven mixing: Global geography and budgets. J. Phys. Oceanogr., 47, 13251345, https://doi.org/10.1175/JPO-D-16-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., C. MacKay, E. E. McPhee-Shaw, K. Morrice, J. B. Girton, and S. R. Terker, 2012: Turbulent mixing and exchange with interior waters on sloping boundaries. J. Phys. Oceanogr., 42, 910927, https://doi.org/10.1175/JPO-D-11-075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lampitt, R. S., E. E. Popova, and T. Tyrrell, 2003: Biogeochemical evidence of vigorous mixing in the abyssal ocean. Geophys. Res. Lett., 30, 1459, https://doi.org/10.1029/2002GL016638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., 1998: Mixing of a tracer in the pycnocline. J. Geophys. Res., 103, 21 49921 529, https://doi.org/10.1029/98JC01738.

  • Ledwell, J. R., and A. J. Watson, 1991: The Santa Monica Basin tracer experiment: A study of diapycnal and isopycnal mixing. J. Geophys. Res., 96, 86958718, https://doi.org/10.1029/91JC00102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., and A. Bratkovich, 1995: A tracer study of mixing in the Santa Cruz Basin. J. Geophys. Res., 100, 20 68120 704, https://doi.org/10.1029/95JC02164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701703, https://doi.org/10.1038/364701a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, https://doi.org/10.1038/35003164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., L. C. S. Laurent, J. B. Girton, and J. M. Toole, 2011: Diapycnal mixing in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 41, 241246, https://doi.org/10.1175/2010JPO4557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., R. Ferrari, S. Merrifield, J. R. Ledwell, L. St Laurent, and A. N. Garabato, 2017: Topographic enhancement of vertical turbulent mixing in the Southern Ocean. Nat. Commun., 8, 14197, https://doi.org/10.1038/ncomms14197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31, 12221246, https://doi.org/10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and R. Ferrari, 2017: Abyssal upwelling and downwelling driven by near-boundary mixing. J. Phys. Oceanogr., 47, 261283, https://doi.org/10.1175/JPO-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhee-Shaw, E., 2006: Boundary-interior exchange: Reviewing the idea that internal-wave mixing enhances lateral dispersal near continental margins. Deep-Sea Res. II, 53, 4259, https://doi.org/10.1016/j.dsr2.2005.10.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moré, J. J., 1978: The Levenberg-Marquardt algorithm: Implementation and theory. Numerical Analysis, G. A. Watson, Lecture Notes in Mathematics, Vol. 630, Springer, 105–116, https://doi.org/10.1007/BFb0067700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Munk, W. H., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O., 1970: On flows induced by diffusion in a stably stratified fluid. Deep-Sea Res. Oceanogr. Abstr., 17, 435443, https://doi.org/10.1016/0011-7471(70)90058-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O., J.-H. Shyu, and H. Salmun, 1986: An experiment on boundary mixing: Mean circulation and transport rates. J. Fluid Mech., 173, 473499, https://doi.org/10.1017/S0022112086001234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, https://doi.org/10.1126/science.276.5309.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1982: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347367, https://doi.org/10.1017/S0022112082002250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saffman, P. G., 1962: The effect of wind shear on horizontal spread from an instantaneous ground source. Quart. J. Roy. Meteor. Soc., 88, 382393, https://doi.org/10.1002/qj.49708837803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., J. Toole, and G. A. Schmidt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin. J. Phys. Oceanogr., 31, 34763495, https://doi.org/10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., A. C. Naveira Garabato, J. R. Ledwell, A. M. Thurnherr, J. M. Toole, and A. J. Watson, 2012: Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr., 42, 21432152, https://doi.org/10.1175/JPO-D-12-027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1987: Current and temperature variability on the continental slope. Philos. Trans. Roy. Soc. London, 323A, 471517, https://doi.org/10.1098/rsta.1987.0100.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., R. W. Schmitt, and K. L. Polzin, 1994: Estimates of diapycnal mixing in the abyssal ocean. Science, 264, 11201123, https://doi.org/10.1126/science.264.5162.1120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voet, G., J. B. Girton, M. H. Alford, G. S. Carter, J. M. Klymak, and J. B. Mickett, 2015: Pathways, volume transport, and mixing of abyssal water in the Samoan Passage. J. Phys. Oceanogr., 45, 562588, https://doi.org/10.1175/JPO-D-14-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, G. L., G. Flierl, R. Ferrari, G. Voet, G. S. Carter, M. H. Alford, and J. B. Girton, 2019: Squeeze dispersion and the effective diapycnal diffusivity of oceanic tracers. Geophys. Res. Lett., 46, 53785386, https://doi.org/10.1029/2019GL082458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wain, D. J., and C. R. Rehmann, 2010: Transport by an intrusion generated by boundary mixing in a lake. Water Resour. Res., 46, W08517, https://doi.org/10.1029/2009WR008391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, A. J., and J. R. Ledwell, 2000: Oceanographic tracer release experiments using sulphur hexafluoride. J. Geophys. Res., 105, 14 32514 337, https://doi.org/10.1029/1999JC900272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, A. J., J. R. Ledwell, M.-J. Messias, B. A. King, N. Mackay, M. P. Meredith, B. Mills, and A. C. Naveira Garabato, 2013: Rapid cross-density ocean mixing at mid-depths in the Drake Passage measured by tracer release. Nature, 501, 408411, https://doi.org/10.1038/nature12432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., J. Callies, and L. N. Thomas, 2018: Submesoscale baroclinic instability in the bottom boundary layer. J. Phys. Oceanogr., 48, 25712592, https://doi.org/10.1175/JPO-D-17-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., 2015: Tidally driven mixing and dissipation in the stratified boundary layer above steep submarine topography. Geophys. Res. Lett., 42, 71237130, https://doi.org/10.1002/2015GL064676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wüest, A., D. van Senden, J. Imberger, G. Piepke, and M. Gloor, 1996: Comparison of diapycnal diffusivity measured by tracer and microstructure techniques. Dyn. Atmos. Oceans, 24, 2739, https://doi.org/10.1016/0377-0265(95)00408-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1970: On oceanic boundary mixing. Deep-Sea Res. Oceanogr. Abstr., 17, 293301, https://doi.org/10.1016/0011-7471(70)90022-7.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W., P. Rhines, and C. Garrett, 1982: Shear-flow dispersion, internal waves and horizontal mixing in the ocean. J. Phys. Oceanogr., 12, 515527, https://doi.org/10.1175/1520-0485(1982)012<0515:SFDIWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zamani, K., and F. A. Bombardelli, 2014: Analytical solutions of nonlinear and variable-parameter transport equations for verification of numerical solvers. Environ. Fluid Mech., 14, 711742, https://doi.org/10.1007/s10652-013-9325-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 796 226 24
PDF Downloads 425 90 11