Global Assessment of Semidiurnal Internal Tide Aliasing in Argo Profiles

Tyler D. Hennon Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Tyler D. Hennon in
Current site
Google Scholar
PubMed
Close
,
Matthew H. Alford Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Matthew H. Alford in
Current site
Google Scholar
PubMed
Close
, and
Zhongxiang Zhao Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Zhongxiang Zhao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Though unresolved by Argo floats, internal waves still impart an aliased signal onto their profile measurements. Recent studies have yielded nearly global characterization of several constituents of the stationary internal tides. Using this new information in conjunction with thousands of floats, we quantify the influence of the stationary, mode-1 M2 and S2 internal tides on Argo-observed temperature. We calculate the in situ temperature anomaly observed by Argo floats (usually on the order of 0.1°C) and compare it to the anomaly expected from the stationary internal tides derived from altimetry. Globally, there is a small, positive correlation between the expected and in situ signals. There is a stronger relationship in regions with more intense internal waves, as well as at depths near the nominal mode-1 maximum. However, we are unable to use this relationship to remove significant variance from the in situ observations. This is somewhat surprising, given that the magnitude of the altimetry-derived signal is often on a similar scale to the in situ signal, and points toward a greater importance of the nonstationary internal tides than previously assumed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: T. Hennon, thennon@ucsd.edu

Abstract

Though unresolved by Argo floats, internal waves still impart an aliased signal onto their profile measurements. Recent studies have yielded nearly global characterization of several constituents of the stationary internal tides. Using this new information in conjunction with thousands of floats, we quantify the influence of the stationary, mode-1 M2 and S2 internal tides on Argo-observed temperature. We calculate the in situ temperature anomaly observed by Argo floats (usually on the order of 0.1°C) and compare it to the anomaly expected from the stationary internal tides derived from altimetry. Globally, there is a small, positive correlation between the expected and in situ signals. There is a stronger relationship in regions with more intense internal waves, as well as at depths near the nominal mode-1 maximum. However, we are unable to use this relationship to remove significant variance from the in situ observations. This is somewhat surprising, given that the magnitude of the altimetry-derived signal is often on a similar scale to the in situ signal, and points toward a greater importance of the nonstationary internal tides than previously assumed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: T. Hennon, thennon@ucsd.edu
Save
  • Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed-layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, https://doi.org/10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Z. Zhao, 2007: Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. J. Phys. Oceanogr., 37, 18291848, https://doi.org/10.1175/JPO3085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, Z. Zhao, R. Pinkel, J. Klymak, and T. Peacock, 2007: Internal waves across the Pacific. Geophys. Res. Lett., 34, L24601, https://doi.org/10.1029/2007GL031566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. E., and S. C. Riser, 2014: Near-surface variability of temperature and salinity in the near-tropical ocean: Observations from profiling floats. J. Geophys. Res. Oceans, 119, 74337448, https://doi.org/10.1002/2014JC010112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., B. K. Arbic, J. G. Richman, J. F. Shriver, A. J. Wallcraft, and L. Zamudio, 2017: Semidiurnal internal tide incoherence in the equatorial Pacific. J. Geophys. Res. Oceans, 122, 52865305, https://doi.org/10.1002/2016JC012590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushinsky, S. M., A. R. Gray, K. S. Johnson, and J. L. Sarmiento, 2017: Oxygen in the Southern Ocean from Argo floats: Determination of processes driving air-sea fluxes. J. Geophys. Res. Oceans, 122, 86618682, https://doi.org/10.1002/2017JC012923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., and O. Pizarro, 2005: Eddy characteristics in the eastern South Pacific. J. Geophys. Res., 110, C06005, https://doi.org/10.1029/2004JC002815.

    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., M. Le Texier, G. Eldin, C. Grados, and O. Pizarro, 2011: Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. J. Geophys. Res., 116, C11025, https://doi.org/10.1029/2011JC007134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., 1985: The energy flux from the wind to near-inertial motions in the mixed layer. J. Phys. Oceanogr., 15, 10431059, https://doi.org/10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dushaw, B. D., P. F. Worcester, and M. A. Dzieciuch, 2011: On the predictability of mode-1 internal tides. Deep-Sea Res. I, 58, 677698, https://doi.org/10.1016/j.dsr.2011.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahrbach, E., M. Hoppema, G. Rohard, M. Schröder, and A. Wisotzki, 2004: Decadal-scale variations of water mass properties in the deep Weddell Sea. Ocean Dyn., 54, 7791, https://doi.org/10.1007/s10236-003-0082-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gould, W. J., 1985: Physical oceanography of the Azores front. Prog. Oceanogr., 14, 167190, https://doi.org/10.1016/0079-6611(85)90010-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennon, T. D., S. C. Riser, and M. H. Alford, 2014: Observations of internal gravity waves by Argo floats. J. Phys. Oceanogr., 44, 23702386, https://doi.org/10.1175/JPO-D-13-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennon, T. D., S. C. Riser, and S. Mecking, 2016: Profiling float-based observations of net respiration beneath the mixed layer. Global Biogeochem. Cycles, 30, 920932, https://doi.org/10.1002/2016GB005380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., and G. Johnson, 2014: Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J. Climate, 27, 19451947, https://doi.org/10.1175/JCLI-D-12-00752.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martz, T. R., K. S. Johnson, and S. C. Riser, 2008: Ocean metabolism observed with oxygen sensors on profiling floats in the South Pacific. Limnol. Oceanogr., 53, 20942111, https://doi.org/10.4319/LO.2008.53.5_PART_2.2094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 63366351, https://doi.org/10.1175/2010JCLI3682.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2004: Observations of energetic high-wavenumber internal waves in the Kuroshio. J. Phys. Oceanogr., 34, 14951505, https://doi.org/10.1175/1520-0485(2004)034<1495:OOEHIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 12201236, https://doi.org/10.1175/JPO2889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1997: Surface manifestations of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135162, https://doi.org/10.1016/S0079-6611(97)00025-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and E. Zaron, 2016: M2 internal tides and their observed wavenumber spectra from satellite altimetry. J. Phys. Oceanogr., 46, 322, https://doi.org/10.1175/JPO-D-15-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and J. Gilson, 2009: The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program. Prog. Oceanogr., 82, 81100, https://doi.org/10.1016/j.pocean.2009.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shum, C. K., R. A. Werner, D. T. Sandwell, B. H. Zhang, R. S. Nerem, and B. D. Tapley, 1990: Variations of global mesoscale eddy energy observed from Geosat. J. Geophys. Res., 95, 17 86517 876, https://doi.org/10.1029/JC095iC10p17865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, P., and D. Roemmich, 2011: Decadal steric and sea surface height changes in the Southern Hemisphere. Geophys. Res. Lett., 38, L08604, https://doi.org/10.1029/2011GL046802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, K. von Schuckman, and L. Cheng, 2016: Insights into Earth’s energy imbalance from multiple sources. J. Climate, 29, 74957505, https://doi.org/10.1175/JCLI-D-16-0339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Schuckmann, K., F. Gaillard, and P.-Y. Le Traon, 2009: Global hydrographic variability patterns during 2003–2008. J. Geophys. Res., 114, C09007, https://doi.org/10.1029/2008JC005237.

    • Search Google Scholar
    • Export Citation
  • Wilson, E. A., and S. C. Riser, 2016: An assessment of the seasonal salinity budget for the upper Bay of Bengal. J. Phys. Oceanogr., 46, 13611376, https://doi.org/10.1175/JPO-D-15-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and R. D. Ray, 2017: Using an altimeter-derived internal tide model to remove tides from in situ data. Geophys. Res. Lett., 44, 42414245, https://doi.org/10.1002/2017GL072950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2017: The global mode-1 S2 internal tide. J. Geophys. Res. Oceans, 122, 87948812, https://doi.org/10.1002/2017JC013112.

  • Zhao, Z., M. H. Alford, J. A. MacKinnon, and R. Pinkel, 2010: Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge. J. Phys. Oceanogr., 40, 713736, https://doi.org/10.1175/2009JPO4207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, H. L. Simmons, and L. Rainville, 2016: Global observations of open-ocean mode-1 M2 internal tides. J. Phys. Oceanogr., 46, 16571684, https://doi.org/10.1175/JPO-D-15-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 415 104 10
PDF Downloads 420 47 1