Coastally Generated Near-Inertial Waves

Samuel M. Kelly Large Lakes Observatory, and Physics and Astronomy Department, University of Minnesota Duluth, Duluth, Minnesota

Search for other papers by Samuel M. Kelly in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Wind directly forces inertial oscillations in the mixed layer. Where these currents hit the coast, the no-normal-flow boundary condition leads to vertical velocities that pump both the base of the mixed layer and the free surface, producing offshore-propagating near-inertial internal and surface waves, respectively. The internal waves directly transport wind work downward into the ocean’s stratified interior, where it may provide mechanical mixing. The surface waves propagate offshore where they can scatter over rough topography in a process analogous to internal-tide generation. Here, we estimate mixed layer currents from observed winds using a damped slab model. Then, we estimate the pressure, velocity, and energy flux associated with coastally generated near-inertial waves at a vertical coastline. These results are extended to coasts with arbitrary across-shore topography and examined using numerical simulations. At the New Jersey shelfbreak, comparisons between the slab model, numerical simulations, and moored observations are ambiguous. Extrapolation of the theoretical results suggests that O(10%) of global wind work (i.e., 0.03 of 0.31 TW) is transferred to coastally generated barotropic near-inertial waves.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samuel M. Kelly, smkelly@d.umn.edu

Abstract

Wind directly forces inertial oscillations in the mixed layer. Where these currents hit the coast, the no-normal-flow boundary condition leads to vertical velocities that pump both the base of the mixed layer and the free surface, producing offshore-propagating near-inertial internal and surface waves, respectively. The internal waves directly transport wind work downward into the ocean’s stratified interior, where it may provide mechanical mixing. The surface waves propagate offshore where they can scatter over rough topography in a process analogous to internal-tide generation. Here, we estimate mixed layer currents from observed winds using a damped slab model. Then, we estimate the pressure, velocity, and energy flux associated with coastally generated near-inertial waves at a vertical coastline. These results are extended to coasts with arbitrary across-shore topography and examined using numerical simulations. At the New Jersey shelfbreak, comparisons between the slab model, numerical simulations, and moored observations are ambiguous. Extrapolation of the theoretical results suggests that O(10%) of global wind work (i.e., 0.03 of 0.31 TW) is transferred to coastally generated barotropic near-inertial waves.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Samuel M. Kelly, smkelly@d.umn.edu
Save
  • Alford, M. H., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368, https://doi.org/10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2003: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, https://doi.org/10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., 2010: Sustained, full-water-column observations of internal waves and mixing near Mendocino Escarpment. J. Phys. Oceanogr., 40, 26432660, https://doi.org/10.1175/2010JPO4502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and M. Whitmont, 2007: Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr., 37, 20222037, https://doi.org/10.1175/JPO3106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Austin, J. A., 2013: Observations of near-inertial energy in Lake Superior. Limnol. Oceanogr., 58, 715728, https://doi.org/10.4319/lo.2013.58.2.0715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1986: Internal tides, internal waves, and near-inertial motions. Baroclinic Processes on Continental Shelves, C. N. K. Mooers, Ed., Coastal and Estuarine Sciences, Vol. 3, Amer. Geophys. Union, 19–31.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K., 1991: Coastal-trapped waves and wind-driven currents over the continental shelf. Annu. Rev. Fluid Mech., 23, 389412, https://doi.org/10.1146/annurev.fl.23.010191.002133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahn, A., 1945: An investigation of the free oscillations of a simple current system. J. Meteor., 2, 113119, https://doi.org/10.1175/1520-0469(1945)002<0113:AIOTFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carwright, D. E., and R. D. Ray, 1991: Energetics of global ocean tides from Geosat altimetry. J. Geophys. Res., 96, 16 89716 912, https://doi.org/10.1029/91JC01059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Central Intelligence Agency, 2018: World Factbook. Central Intelligence Agency, https://www.cia.gov/library/publications/the-world-factbook/.

    • Search Google Scholar
    • Export Citation
  • Chant, R. J., 2001: Evolution of near-inertial waves during an upwelling event on the New Jersey inner shelf. J. Phys. Oceanogr., 31, 746764, https://doi.org/10.1175/1520-0485(2001)031<0746:EONIWD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., C. D. Troy, T.-C. Hsieh, N. Hawley, and M. J. McCormick, 2012: A year of internal Poincaré waves in southern Lake Michigan. J. Geophys. Res., 117, C07014, https://doi.org/10.1029/2012JC007984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 1982: Circulation in the Coastal Ocean. Springer, 279 pp.

    • Crossref
    • Export Citation
  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15, 10431059, https://doi.org/10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1989: The decay of wind-forced mixed layer inertial oscillations due to the β effect. J. Geophys. Res., 94, 20452056, https://doi.org/10.1029/JC094iC02p02045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., C. C. Eriksen, M. D. Levine, P. Niler, C. A. Paulson, and P. Van Meurs, 1995: Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., 25, 29092936, https://doi.org/10.1175/1520-0485(1995)025<2909:UOICFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Federiuk, J., and J. S. Allen, 1996: Model studies of near-inertial waves in flow over the Oregon continental shelf. J. Phys. Oceanogr., 26, 20532075, https://doi.org/10.1175/1520-0485(1996)026<2053:MSONIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1971: The age of the tide and the “Q” of the oceans. Deep-Sea Res. Oceanogr. Abstr., 18, 493503, https://doi.org/10.1016/0011-7471(71)90073-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 11291151, https://doi.org/10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, R. A., J. N. Huthnance, and R. G. Williams, 2013: Internal wave reflection on shelf slopes with depth-varying stratification. J. Phys. Oceanogr., 43, 248258, https://doi.org/10.1175/JPO-D-11-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, J. E., G. R. Stephenson, J. A. M. Green, M. E. Inall, and M. R. Palmer, 2014: Storms modify baroclinic energy fluxes in a seasonally stratified shelf sea: Inertial-tidal interaction. J. Geophys. Res. Oceans, 119, 68636883, https://doi.org/10.1002/2014JC010011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814, https://doi.org/10.1029/2000GL012044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, J., Y. Lu, and W. Perrie, 2005: Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett., 32, L15610, https://doi.org/10.1029/2005GL023289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., L. Wu, and X. Ma, 2017: Energy exchange between the mesoscale oceanic eddies and wind-forced near-inertial oscillations. J. Phys. Oceanogr., 47, 721733, https://doi.org/10.1175/JPO-D-16-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., D. L. Rudnick, and S. M. Kelly, 2015: Standing internal tides in the Tasman Sea observed by gliders. J. Phys. Oceanogr., 45, 27152737, https://doi.org/10.1175/JPO-D-15-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., 2016: The vertical mode decomposition of surface and internal tides in the presence of a free surface and arbitrary topography. J. Phys. Oceanogr., 46, 37773788, https://doi.org/10.1175/JPO-D-16-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., and P. F. J. Lermusiaux, 2016: Internal-tide interactions with the Gulf Stream and Middle Atlantic Bight shelfbreak front. J. Geophys. Res. Oceans, 121, 62716294, https://doi.org/10.1002/2016JC011639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., N. L. Jones, J. D. Nash, and A. F. Waterhouse, 2013: The geography of semidiurnal mode-1 internal-tide energy loss. Geophys. Res. Lett., 40, 46894693, https://doi.org/10.1002/grl.50872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., P. F. J. Lermusiaux, T. F. Duda, and P. J. Haley Jr., 2016: A coupled-mode shallow-water model for tidal analysis: Internal tide reflection and refraction by the Gulf Stream. J. Phys. Oceanogr., 46, 36613679, https://doi.org/10.1175/JPO-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., 1984: Generation of coastal inertial oscillations by time-varying wind. J. Phys. Oceanogr., 14, 19011913, https://doi.org/10.1175/1520-0485(1984)014<1901:GOCIOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., S.-Y. Chao, and J. P. McCreary, 1983: Transient coastal currents and inertio-gravity waves. Deep-Sea Res., 30, 10591082, https://doi.org/10.1016/0198-0149(83)90061-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., and W. R. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr., 32, 15541566, https://doi.org/10.1175/1520-0485(2002)032<1554:COTBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mandelbrot, B., 1967: How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156, 636638, https://doi.org/10.1126/science.156.3775.636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millot, C., and M. Crépon, 1981: Inertial oscillations on the continental shelf of the Gulf of Lions—Observations and theory. J. Phys. Oceanogr., 11, 639657, https://doi.org/10.1175/1520-0485(1981)011<0639:IOOTCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moehlis, J., and S. G. Llewellyn Smith, 2001: Radiation of mixed layer near-inertial oscillations into the ocean interior. J. Phys. Oceanogr., 31, 15501560, https://doi.org/10.1175/1520-0485(2001)031<1550:ROMLNI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morse, P. M., 1948: Vibration and Sound. 2nd ed., McGraw-Hill, 468 pp.

  • Nash, J. D., S. M. Kelly, E. L. Shroyer, J. N. Moum, and T. F. Duda, 2012a: The unpredictable nature of internal tides on continental shelves. J. Phys. Oceanogr., 42, 19812000, https://doi.org/10.1175/JPO-D-12-028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Shroyer, S. M. Kelly, M. Inall, T. Duda, M. Levine, N. Jones, and R. Musgrave, 2012b: Are any coastal internal tides predictable? Oceanography, 25, 8095, https://doi.org/10.5670/oceanog.2012.44.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pettigrew, N. R., 1980: The dynamics and kinematics of the coastal boundary layer off Long Island. Ph.D. thesis, Massachusetts Institute of Technology, 262 pp., https://doi.org/10.1575/1912/3727.

    • Crossref
    • Export Citation
  • Plueddemann, A. J., and J. T. Farrar, 2006: Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep-Sea Res. II, 53, 530, https://doi.org/10.1016/J.DSR2.2005.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., 1970: On the generation by winds of inertial waves in the ocean. Deep-Sea Res. Oceanogr. Abstr., 17, 795812, https://doi.org/10.1016/0011-7471(70)90042-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and R. C. Millard, 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res. Oceanogr. Abstr., 17, 813821, https://doi.org/10.1016/0011-7471(70)90043-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1983: Internal wave wake of a moving storm. Part I: Scales, energy budget, and observations. J. Phys. Oceanogr., 13, 949965, https://doi.org/10.1175/1520-0485(1983)013<0949:IWWOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shearman, R. K., 2005: Observations of near-inertial current variability on the New England Shelf. J. Geophys. Res., 110, C02012, https://doi.org/10.1029/2004JC002341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shroyer, E. L., J. N. Moum, and J. D. Nash, 2011: Nonlinear internal waves over New Jersey’s continental shelf. J. Geophys. Res., 116, C03022, https://doi.org/10.1029/2010JC006332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., and M. H. Alford, 2012: Simulating the long-range swell of internal waves generated by ocean storms. Oceanography, 25, 3041, https://doi.org/10.5670/oceanog.2012.39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, https://doi.org/10.1126/science.277.5334.1956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, D., and Coauthors, 2007: Shallow Water ‘06: A joint acoustic propagation/nonlinear internal wave physics experiment. Oceanography, 20, 156167, https://doi.org/10.5670/oceanog.2007.16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 1239, https://doi.org/10.1029/2001GL014422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2018: Observations of the Tasman Sea internal tide beam. J. Phys. Oceanogr., 48, 12831297, https://doi.org/10.1175/JPO-D-17-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., 1982: The relation of near-inertial motions observed in the mixed layer during the JASIN (1978) experiment to the local wind stress and to the quasi-geostrophic flow field. J. Phys. Oceanogr., 12, 11221136, https://doi.org/10.1175/1520-0485(1982)012<1122:TRONIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2015: Modern Observational Physical Oceanography: Understanding the Global Ocean. Princeton University Press, 512 pp.

  • Young, W. R., and M. Ben Jelloul, 1997: Propagation of near inertial oscillations through a geostrophic flow. J. Mar. Res., 55, 735766, https://doi.org/10.1357/0022240973224283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. G., and T. F. Duda, 2013: Intrinsic nonlinearity and spectral structure of internal tides at an idealized Mid-Atlantic Bight shelf break. J. Phys. Oceanogr., 43, 26412660, https://doi.org/10.1175/JPO-D-12-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 551 191 16
PDF Downloads 468 156 21