Strong Internal Waves Generated by the Interaction of the Kuroshio and Tides over a Shallow Ridge

Eiji Masunaga Center for Water Environment Studies, Ibaraki University, Mito, Japan

Search for other papers by Eiji Masunaga in
Current site
Google Scholar
PubMed
Close
,
Yusuke Uchiyama Department of Civil Engineering, Kobe University, Kobe, Japan

Search for other papers by Yusuke Uchiyama in
Current site
Google Scholar
PubMed
Close
, and
Hidekatsu Yamazaki Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan

Search for other papers by Hidekatsu Yamazaki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Kuroshio and tides significantly influence the oceanic environment off the Japanese mainland and promote mass/heat transport. However, the interaction between the Kuroshio and tides/internal waves has not been examined in previous works. To investigate this phenomenon, the two-dimensional high-resolution nonhydrostatic oceanic Stanford Unstructured Nonhydrostatic Terrain-Following Adaptive Navier–Stokes Simulator (SUNTANS) model was employed. The results show that strong internal tides propagating upstream in the Kuroshio are generated at a near-critical internal Froude number (Fri = 0.91). The upstream internal wave energy flux reaches a magnitude of 12 kW m−1, which is approximately 3 times higher than that of internal waves without the Kuroshio. On the other hand, under supercritical conditions, the Kuroshio suppresses the internal wave energy flux. The interaction of internal tides and the Kuroshio also generates upstream propagating high-frequency internal waves and solitary wave packets. The high-frequency internal waves contribute to the increase in the total internal wave energy flux up to 40% at the near-critical Fri value. The results of this study suggest that the interaction of internal tides and the Kuroshio enhances the upstream propagating internal tides under the specified conditions (Fri ~ 1), which may lead to deep ocean mixing and transport at significant distances from the internal wave generation sites.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eiji Masunaga, eiji.masunaga.office@vc.ibaraki.ac.jp

Abstract

The Kuroshio and tides significantly influence the oceanic environment off the Japanese mainland and promote mass/heat transport. However, the interaction between the Kuroshio and tides/internal waves has not been examined in previous works. To investigate this phenomenon, the two-dimensional high-resolution nonhydrostatic oceanic Stanford Unstructured Nonhydrostatic Terrain-Following Adaptive Navier–Stokes Simulator (SUNTANS) model was employed. The results show that strong internal tides propagating upstream in the Kuroshio are generated at a near-critical internal Froude number (Fri = 0.91). The upstream internal wave energy flux reaches a magnitude of 12 kW m−1, which is approximately 3 times higher than that of internal waves without the Kuroshio. On the other hand, under supercritical conditions, the Kuroshio suppresses the internal wave energy flux. The interaction of internal tides and the Kuroshio also generates upstream propagating high-frequency internal waves and solitary wave packets. The high-frequency internal waves contribute to the increase in the total internal wave energy flux up to 40% at the near-critical Fri value. The results of this study suggest that the interaction of internal tides and the Kuroshio enhances the upstream propagating internal tides under the specified conditions (Fri ~ 1), which may lead to deep ocean mixing and transport at significant distances from the internal wave generation sites.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eiji Masunaga, eiji.masunaga.office@vc.ibaraki.ac.jp
Save
  • Alford, M. H., and Coauthors, 2015: The formation and fate of internal waves in the South China Sea. Nature, 521, 6569, https://doi.org/10.1038/nature14399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arthur, R. S., and O. B. Fringer, 2016: Transport by breaking internal waves on slopes. J. Fluid Mech., 789, 93126, https://doi.org/10.1017/jfm.2015.723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourgault, D., M. Morsilli, C. Richards, U. Neumeier, and D. E. Kelley, 2014: Sediment resuspension and nepheloid layers induced by long internal solitary waves shoaling orthogonally on uniform slopes. Cont. Shelf Res., 72, 2133, https://doi.org/10.1016/j.csr.2013.10.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cacchione, D. A., L. F. Pratson, and A. S. Ogston, 2002: The shaping of continental slopes by internal tides. Science, 296, 724727, https://doi.org/10.1126/science.1069803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Da Silva, J. C. B., M. C. Buijsman, and J. M. Magalhaes, 2015: Internal waves on the upstream side of a large sill of the Mascarene Ridge: A comprehensive view of their generation mechanisms and evolution. Deep-Sea Res. I, 99, 87104, https://doi.org/10.1016/j.dsr.2015.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, K.A., J. J. Leichter, J. L. Hench, and S. G. Monismith, 2008: Effects of western boundary current dynamics on the internal wave field of the Southeast Florida shelf. J. Geophys. Res., 113, C09010, https://doi.org/10.1029/2007JC004699.

    • Search Google Scholar
    • Export Citation
  • Edwards, K. A., P. MacCready, J. N. Moum, G. Pawlak, J. M. Klymak, and A. Perlin, 2004: Form drag and mixing due to tidal flow past a sharp point. J. Phys. Oceanogr., 34, 12971312, https://doi.org/10.1175/1520-0485(2004)034<1297:FDAMDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., and R. A. Denton, 1985: Hydraulic control of flow over the sill in Observatory Inlet. J. Geophys. Res., 90, 90519068, https://doi.org/10.1029/JC090iC05p09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., and L. Armi, 1999: The generation and trapping of solitary waves over topography. Science, 283, 188190, https://doi.org/10.1126/science.283.5399.188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferron, B., F. Kokoszka, H. Mercier, and P. Lherminier, 2014: Dissipation rate estimates from microstructure and finescale internal wave observations along the A25 Greenland–Portugal OVIDE line. J. Atmos. Oceanic Technol., 31, 25302543, https://doi.org/10.1175/JTECH-D-14-00036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fringer, O. B., M. Gerritsen, and R. L. Street, 2006: An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Modell., 14, 139173, https://doi.org/10.1016/j.ocemod.2006.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, C., and X. Chen, 2014: A review of internal solitary wave dynamics in the northern South China Sea. Prog. Oceanogr., 121, 723, https://doi.org/10.1016/j.pocean.2013.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasegawa, D., H. Yamazaki, T. Ishimaru, H. Nagashima, and Y. Koike, 2008: Apparent phytoplankton bloom due to island mass effect. J. Mar. Syst., 69, 238246, https://doi.org/10.1016/j.jmarsys.2006.04.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, D., and O. Fringer, 2012: Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr., 42, 272290, https://doi.org/10.1175/JPO-D-11-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., and M. Dunphy, 2018: Internal wave generation by tidal flow over a two-dimensional ridge: Energy flux asymmetries induced by a steady surface trapped currents. J. Fluid Mech., 836, 192221, https://doi.org/10.1017/jfm.2017.800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., T. Ishihara, T. Tanaka, and X. He, 2016: LES study of turbulent flow fields over a smooth 3-D hill and a smooth 2-D ridge. J. Wind Eng. Ind. Aerodyn., 153, 112, https://doi.org/10.1016/j.jweia.2016.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and Coauthors, 2017: Climate process team on internal wave–driven ocean mixing. Bull. Amer. Meteor. Soc., 98, 24292454, https://doi.org/10.1175/BAMS-D-16-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, E., H. Homma, H. Yamazaki, O. B. Fringer, T. Nagai, Y. Kitade, and A. Okayasu, 2015: Mixing and sediment resuspension associated with internal bores in a shallow bay. Cont. Shelf Res., 110, 8599, https://doi.org/10.1016/j.csr.2015.09.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, E., R. S. Arthur, O. B. Fringer, and H. Yamazaki, 2017a: Sediment resuspension and generation of intermediate nephew layers by shoaling internal bores. J. Mar. Syst., 170, 3141, https://doi.org/10.1016/j.jmarsys.2017.01.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, E., O. B. Fringer, Y. Kitade, H. Yamzaki, and S. M. Gallager, 2017b: Dynamics and energetics of trapped diurnal internal Kelvin waves around a mid-latitude island. J. Phys. Oceanogr., 47, 24792498, https://doi.org/10.1175/JPO-D-16-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, E., Y. Uchiyama, Y. Suzue, and H. Yamazaki, 2018: Dynamics of internal tides over a shallow ridge investigated with a high-resolution downscaling regional ocean model. Geophys. Res. Lett., 45, 35503558, https://doi.org/10.1002/2017GL076916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, C. C., 1992: The Applied Dynamics of Ocean Surface Waves. Advanced Series on Ocean Engineering, Vol. 1, World Scientific, 768 pp.

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., and P. E. Holloway, 2002: Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res., 107, 3179, https://doi.org/10.1029/2001JC000996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millero, F. J., and A. Poisson, 1981: International one-atmosphere equation of state of seawater. Deep-Sea Res., 28A, 625629, https://doi.org/10.1016/0198-0149(81)90122-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, H. Yamazaki, M. J. Doubell, and S. Gallager, 2012: Direct observations of microscale turbulence and thermohaline structure in the Kuroshio Front. J. Geophys. Res. Oceans, 117, C08013, https://doi.org/10.1029/2011JC007228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, T., D. Hasegawa, T. Tanaka, H. Nakamura, E. Tsutsumi, R. Inoue, and T. Yamashiro, 2017: First evidence of coherent bands of strong turbulent layers associated with high-wavenumber internal-wave shear in the upstream Kuroshio. Sci. Rep., 7, 14555, https://doi.org/10.1038/s41598-017-15167-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., and J. N. Moum, 2005: River plumes as a source of large-amplitude internal waves in the coastal ocean. Nature, 437, 400403, https://doi.org/10.1038/nature03936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40, 10551074, https://doi.org/10.1175/2009JPO4199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, C., D. Bourgault, P. S. Galbraith, A. Hay, and D. E. Kelley, 2013: Measurements of shoaling internal waves and turbulence in an estuary. J. Geophys. Res. Oceans, 118, 273286, https://doi.org/10.1029/2012JC008154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357, https://doi.org/10.1126/science.1085837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shang, X., Y. Qi, G. Chen, C. Liang, R. G. Lueck, B. Prairie, and H. Li, 2017: An expendable microstructure profiler for deep ocean measurements. J. Atmos. Oceanic Technol., 34, 153165, https://doi.org/10.1175/JTECH-D-16-0083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharples, J., C. M. Moore, A. E. Hickman, P. M. Holligan, J. F. Tweddle, M. R. Palmer, and J. H. Simpson, 2009: Internal tidal mixing as a control on continental margin ecosystems. Geophys. Res. Lett., 36, L23603, https://doi.org/10.1029/2009GL040683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., and J. D. Nash, 2004: An examination of the radiative and dissipative properties of deep ocean internal tides. Deep-Sea Res. II, 51, 30293042, https://doi.org/10.1016/j.dsr2.2004.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venayagamoorthy, S. K., and O. B. Fringer, 2006: Numerical simulations of the interaction of internal waves with a shelf break. Phys. Fluids, 18, 076603, https://doi.org/10.1063/1.2221863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vic, C., and Coauthors, 2019: Deep-ocean mixing driven by small-scale internal tides. Nat. Commun., 10, 2099, https://doi.org/10.1038/s41467-019-10149-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. J., 1991: Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350, 5355, https://doi.org/10.1038/350053a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., O. B. Fringer, and S. R. Ramp, 2011: Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. J. Geophys. Res., 116, C05022, https://doi.org/10.1029/2010JA016287.

    • Search Google Scholar
    • Export Citation
  • Zilberman, N. V., J. M. Becker, M. A. Merrifield, and G. S. Carter, 2009: Model estimates of M2 internal tide generation over Mid-Atlantic Ridge topography. J. Phys. Oceanogr., 39, 26352651, https://doi.org/10.1175/2008JPO4136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 688 112 8
PDF Downloads 717 128 7