A Parameterization with a Constrained Potential Energy Conversion Rate of Vertical Mixing Due to Langmuir Turbulence

Brandon G. Reichl Program in Atmospheric and Oceanic Science, Princeton University, Princeton, New Jersey

Search for other papers by Brandon G. Reichl in
Current site
Google Scholar
PubMed
Close
and
Qing Li Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island

Search for other papers by Qing Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study we develop a new parameterization for turbulent mixing in the ocean surface boundary layer (OSBL), including the effect of Langmuir turbulence. This new parameterization builds on a recent study (, hereafter ), which predicts the available energy for turbulent mixing against stable stratification driven by shear and convective turbulence. To investigate the role of Langmuir turbulence in the framework of , we utilize data from a suite of previously published large-eddy simulation (LES) experiments (, hereafter ) with and without Langmuir turbulence under different idealized forcing conditions. We find that the parameterization of is able to reproduce the mixing simulated by the LES in the non-Langmuir cases, but not the Langmuir cases. We therefore investigate the enhancement of the integrated vertical buoyancy flux within the entrainment layer in the presence of Langmuir turbulence using the LES data. An additional factor is introduced in the framework to capture the enhanced mixing due to Langmuir turbulence. This additional factor depends on the surface-layer averaged Langmuir number with a reduction in the presence of destabilizing surface buoyancy fluxes. It is demonstrated that including this factor within the OSBL turbulent mixing parameterization framework captures the simulated effect of Langmuir turbulence in the LES, which can be used for simulating the effect of Langmuir turbulence in climate simulations. This new parameterization is compared to the KPP-based Langmuir entrainment parameterization introduced by , and differences are explored in detail.

Current affiliation: NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey.

Current affiliation: Fluid Dynamics and Solid Mechanics, Los Alamos National Laboratory, Los Alamos, New Mexico.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Brandon G. Reichl, brandon.reichl@noaa.gov

Abstract

In this study we develop a new parameterization for turbulent mixing in the ocean surface boundary layer (OSBL), including the effect of Langmuir turbulence. This new parameterization builds on a recent study (, hereafter ), which predicts the available energy for turbulent mixing against stable stratification driven by shear and convective turbulence. To investigate the role of Langmuir turbulence in the framework of , we utilize data from a suite of previously published large-eddy simulation (LES) experiments (, hereafter ) with and without Langmuir turbulence under different idealized forcing conditions. We find that the parameterization of is able to reproduce the mixing simulated by the LES in the non-Langmuir cases, but not the Langmuir cases. We therefore investigate the enhancement of the integrated vertical buoyancy flux within the entrainment layer in the presence of Langmuir turbulence using the LES data. An additional factor is introduced in the framework to capture the enhanced mixing due to Langmuir turbulence. This additional factor depends on the surface-layer averaged Langmuir number with a reduction in the presence of destabilizing surface buoyancy fluxes. It is demonstrated that including this factor within the OSBL turbulent mixing parameterization framework captures the simulated effect of Langmuir turbulence in the LES, which can be used for simulating the effect of Langmuir turbulence in climate simulations. This new parameterization is compared to the KPP-based Langmuir entrainment parameterization introduced by , and differences are explored in detail.

Current affiliation: NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey.

Current affiliation: Fluid Dynamics and Solid Mechanics, Los Alamos National Laboratory, Los Alamos, New Mexico.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Brandon G. Reichl, brandon.reichl@noaa.gov
Save
  • Adcroft, A., R. W. Hallberg, and the MOM6 team, 2018: MOM6 model source and documentation. https://github.com/NOAA-GFDL/MOM6-examples/wiki.

  • Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. A. Hwang, A. J. Williams III, W. M. Drennan, K. K. Kahma, and S. A. Kitaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219220, https://doi.org/10.1038/359219a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anis, A., and J. N. Moum, 1995: Surface wave-turbulence interactions: Scaling ε(z) near the sea surface. J. Phys. Oceanogr., 25, 20252045, https://doi.org/10.1175/1520-0485(1995)025<2025:SWISNT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Axell, L. B., 2002: Wind-driven internal waves and Langmuir circulations in a numerical ocean model of the southern Baltic Sea. J. Geophys. Res., 107, 3204, https://doi.org/10.1029/2001JC000922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caughey, S. J., and S. G. Palmer, 1979: Some aspects of turbulence structure through the depth of the convective boundary layer. Quart. J. Roy. Meteor. Soc., 105, 811827, https://doi.org/10.1002/qj.49710544606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, https://doi.org/10.1017/S0022112076001420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101115, https://doi.org/10.1146/annurev-marine-010213-135138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Alessio, S. J. D., K. Abdella, and N. A. McFarlane, 1998: A new second-order turbulence closure scheme for modeling the oceanic mixed layer. J. Phys. Oceanogr., 28, 16241641, https://doi.org/10.1175/1520-0485(1998)028<1624:ANSOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, 315A, 509562, https://doi.org/10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., and S. M. Griffies, 2014: Impacts of parameterized Langmuir turbulence and nonbreaking wave mixing in global climate simulations. J. Climate, 27, 47524775, https://doi.org/10.1175/JCLI-D-13-00583.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerbi, G. P., J. H. Trowbridge, E. A. Terray, A. J. Plueddemann, and T. Kukulka, 2009: Observations of turbulence in the ocean surface boundary layer: Energetics and transport. J. Phys. Oceanogr., 39, 10771096, https://doi.org/10.1175/2008JPO4044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, A. L., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 18711887, https://doi.org/10.1175/2009JPO4119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 2013: A second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 43, 673697, https://doi.org/10.1175/JPO-D-12-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., 2015: An improved second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr., 45, 84103, https://doi.org/10.1175/JPO-D-14-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562, https://doi.org/10.1175/2007JPO3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewitt, H. T., and Coauthors, 2017: Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales? Ocean Modell., 120, 120136, https://doi.org/10.1016/j.ocemod.2017.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoecker-Martínez, M. S., W. D. Smyth, and E. D. Skyllingstad, 2016: Oceanic turbulent energy budget using large-eddy simulation of a wind event during DYNAMO. J. Phys. Oceanogr., 46, 827840, https://doi.org/10.1175/JPO-D-15-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, L., R. Hallberg, and S. Legg, 2008: A parameterization of shear-driven turbulence for ocean climate models. J. Phys. Oceanogr., 38, 10331053, https://doi.org/10.1175/2007JPO3779.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 2004: On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modell., 6, 101124, https://doi.org/10.1016/S1463-5003(02)00062-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., and R. R. Harcourt, 2017: Influence of Stokes drift decay scale on Langmuir turbulence. J. Phys. Oceanogr., 47, 16371656, https://doi.org/10.1175/JPO-D-16-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2009: Significance of Langmuir circulation in upper ocean mixing: Comparison of observations and simulations. Geophys. Res. Lett., 36, L10603, https://doi.org/10.1029/2009GL037620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2010: Rapid mixed layer deepening by the combination of Langmuir and shear instabilities: A case study. J. Phys. Oceanogr., 40, 23812400, https://doi.org/10.1175/2010JPO4403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res. I, 52, 259278, https://doi.org/10.1016/j.dsr.2004.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., and B. Fox-Kemper, 2017: Assessing the effects of Langmuir turbulence on the entrainment buoyancy flux in the ocean surface boundary layer. J. Phys. Oceanogr., 47, 28632886, https://doi.org/10.1175/JPO-D-17-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., A. Webb, B. Fox-Kemper, A. Craig, G. Danabasoglu, W. G. Large, and M. Vertenstein, 2016: Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Modell., 103, 145160, https://doi.org/10.1016/j.ocemod.2015.07.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull., 6, 225237, https://doi.org/10.1016/S1353-2561(01)00041-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C. H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 17931816, https://doi.org/10.1175/JPO-D-12-07.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J. Liang, and P. P. Sullivan, 2014: Langmuir turbulence in swell. J. Phys. Oceanogr., 44, 870890, https://doi.org/10.1175/JPO-D-13-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1996: The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech., 28, 279321, https://doi.org/10.1146/annurev.fl.28.010196.001431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the k-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, https://doi.org/10.1023/A:1022146015946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., S. Min, and S. Raasch, 2004: Large eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34, 720735, https://doi.org/10.1175/1520-0485(2004)034<0720:LESOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., H. Ok, E. Lee, T. Toyoda, and N. Hirose, 2016: Parameterization of Langmuir circulation in the ocean mixed layer model using les and its application to the OGCM. J. Phys. Oceanogr., 46, 5778, https://doi.org/10.1175/JPO-D-14-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, B. C., A. L. M. Grant, J. A. Polton, and S. E. Belcher, 2015: Langmuir turbulence and surface heating in the ocean surface boundary layer. J. Phys. Oceanogr., 45, 28972911, https://doi.org/10.1175/JPO-D-15-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pizzo, N. E., L. Deike, and W. K. Melville, 2016: Current generation by deep-water breaking waves. J. Fluid Mech., 803, 275291, https://doi.org/10.1017/jfm.2016.469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polton, J. A., and S. E. Belcher, 2007: Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res., 112, C09020, https://doi.org/10.1029/2007JC004205.

    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., and R. Hallberg, 2018: A simplified energetics based planetary boundary layer (ePBL) approach for ocean climate simulations. Ocean Modell., 132, 112129, https://doi.org/10.1016/j.ocemod.2018.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., D. Wang, T. Hara, I. Ginis, and T. Kukulka, 2016: Langmuir turbulence parameterization in tropical cyclone conditions. J. Phys. Oceanogr., 46, 863886, https://doi.org/10.1175/JPO-D-15-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinha, N., A. E. Tejada-Martínez, C. Akan, and C. E. Grosch, 2015: Toward a K-profile parameterization of Langmuir turbulence in shallow coastal shelves. J. Phys. Oceanogr., 45, 28692895, https://doi.org/10.1175/JPO-D-14-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 85018522, https://doi.org/10.1029/94JC03202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1992: Observed growth of Langmuir circulation. J. Geophys. Res., 97, 56515664, https://doi.org/10.1029/91JC03118.

  • Smyth, W. D., E. D. Skyllingstad, G. B. Crawford, and H. W. Wijesekera, 2002: Nonlocal fluxes and Stokes drift effects in the K-profile parameterization. Ocean Dyn., 52, 104115, https://doi.org/10.1007/s10236-002-0012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452, https://doi.org/10.1017/S002211200700897X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., and S. E. Belcher, 2002: On the distortion of turbulence by a progressive surface wave. J. Fluid Mech., 458, 229267, https://doi.org/10.1017/S0022112002007838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, J., S. Schwendeman, S. F. Zippel, S. Moghimi, and J. Gemmrich, 2016: Wave-breaking turbulence in the ocean surface layer. J. Phys. Oceanogr., 46, 18571870, https://doi.org/10.1175/JPO-D-15-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Bremer, T. S., and O. Breivik, 2017: Stokes drift. Philos. Trans. Roy. Soc. London, 376A, 123, https://doi.org/10.1098/RSTA.2017.0104.

    • Search Google Scholar
    • Export Citation
  • Van Roekel, L. P., B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, https://doi.org/10.1029/2011JC007516.

    • Search Google Scholar
    • Export Citation
  • Van Roekel, L. P., and Coauthors, 2018: The KPP boundary layer scheme for the ocean: Revisiting its formulation and benchmarking one-dimensional simulations relative to LES. J. Adv. Model. Earth Syst., 10, 26472684, https://doi.org/10.1029/2018MS001336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., P. G. Duynkerke, and J. W. M. Cuijpers, 1999: Entrainment parameterization in convective boundary layers. J. Atmos. Sci., 56, 813828, https://doi.org/10.1175/1520-0469(1999)056<0813:EPICBL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weller, R. A., and J. F. Price, 1988: Langmuir circulations within the oceanic mixed layer. Deep-Sea Res., 35, 711747, https://doi.org/10.1016/0198-0149(88)90027-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 569 162 12
PDF Downloads 459 147 17