Testing the Assumptions Underlying Ocean Mixing Methodologies Using Direct Numerical Simulations

J. R. Taylor Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Search for other papers by J. R. Taylor in
Current site
Google Scholar
PubMed
Close
,
S. M. de Bruyn Kops Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts

Search for other papers by S. M. de Bruyn Kops in
Current site
Google Scholar
PubMed
Close
,
C. P. Caulfield BP Institute, and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Search for other papers by C. P. Caulfield in
Current site
Google Scholar
PubMed
Close
, and
P. F. Linden Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Search for other papers by P. F. Linden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Direct numerical simulations of stratified turbulence are used to test several fundamental assumptions involved in the Osborn, Osborn–Cox, and Thorpe methods commonly used to estimate the turbulent diffusivity from field measurements. The forced simulations in an idealized triply periodic computational domain exhibit characteristic features of stratified turbulence including intermittency and layer formation. When calculated using the volume-averaged dissipation rates from the simulations, the vertical diffusivities inferred from the Osborn and Osborn–Cox methods are within 40% of the value diagnosed using the volume-averaged buoyancy flux for all cases, while the Thorpe-scale method performs similarly well in the simulation with a relatively large buoyancy Reynolds number (Reb ≃ 240) but significantly overestimates the vertical diffusivity in simulations with Reb < 60. The methods are also tested using a limited number of vertical profiles randomly selected from the computational volume. The Osborn, Osborn–Cox, and Thorpe-scale methods converge to their respective estimates based on volume-averaged statistics faster than the vertical diffusivity calculated directly from the buoyancy flux, which is contaminated with reversible contributions from internal waves. When applied to a small number of vertical profiles, several assumptions underlying the Osborn and Osborn–Cox methods are not well supported by the simulation data. However, the vertical diffusivity inferred from these methods compares reasonably well to the exact value from the simulations and outperforms the assumptions underlying these methods in terms of the relative error. Motivated by a recent theoretical development, it is speculated that the Osborn method might provide a reasonable approximation to the diffusivity associated with the irreversible buoyancy flux.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John R. Taylor, j.r.taylor@damtp.cam.ac.uk

Abstract

Direct numerical simulations of stratified turbulence are used to test several fundamental assumptions involved in the Osborn, Osborn–Cox, and Thorpe methods commonly used to estimate the turbulent diffusivity from field measurements. The forced simulations in an idealized triply periodic computational domain exhibit characteristic features of stratified turbulence including intermittency and layer formation. When calculated using the volume-averaged dissipation rates from the simulations, the vertical diffusivities inferred from the Osborn and Osborn–Cox methods are within 40% of the value diagnosed using the volume-averaged buoyancy flux for all cases, while the Thorpe-scale method performs similarly well in the simulation with a relatively large buoyancy Reynolds number (Reb ≃ 240) but significantly overestimates the vertical diffusivity in simulations with Reb < 60. The methods are also tested using a limited number of vertical profiles randomly selected from the computational volume. The Osborn, Osborn–Cox, and Thorpe-scale methods converge to their respective estimates based on volume-averaged statistics faster than the vertical diffusivity calculated directly from the buoyancy flux, which is contaminated with reversible contributions from internal waves. When applied to a small number of vertical profiles, several assumptions underlying the Osborn and Osborn–Cox methods are not well supported by the simulation data. However, the vertical diffusivity inferred from these methods compares reasonably well to the exact value from the simulations and outperforms the assumptions underlying these methods in terms of the relative error. Motivated by a recent theoretical development, it is speculated that the Osborn method might provide a reasonable approximation to the diffusivity associated with the irreversible buoyancy flux.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John R. Taylor, j.r.taylor@damtp.cam.ac.uk
Save
  • Alford, M., and R. Pinkel, 2000a: Patterns of turbulent and double-diffusive phenomena: Observations from a rapid-profiling microconductivity probe. J. Phys. Oceanogr., 30, 833854, https://doi.org/10.1175/1520-0485(2000)030<0833:POTADD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M., and R. Pinkel, 2000b: Observations of overturning in the thermocline: The context of ocean mixing. J. Phys. Oceanogr., 30, 805832, https://doi.org/10.1175/1520-0485(2000)030<0805:OOOITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almalkie, S., and S. M. de Bruyn Kops, 2012a: Energy dissipation rate surrogates in incompressible Navier-Stokes turbulence. J. Fluid Mech., 697, 204236, https://doi.org/10.1017/jfm.2012.53.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Almalkie, S., and S. M. de Bruyn Kops, 2012b: Kinetic energy dynamics in forced, homogeneous, and axisymmetric stably stratified turbulence. J. Turbul., 13, 129, https://doi.org/10.1080/14685248.2012.702909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. A., and C. H. Gibson, 1987: Sampling turbulence in the stratified ocean: Statistical consequences of strong intermittency. J. Phys. Oceanogr., 17, 18171836, https://doi.org/10.1175/1520-0485(1987)017<1817:STITSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caulfield, C. P., and W. R. Peltier, 2000: The anatomy of the mixing transition in homogeneous and stratified free shear layers. J. Fluid Mech., 413, 147, https://doi.org/10.1017/S0022112000008284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comte-Bellot, G., and S. Corrsin, 1971: Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated ‘isotropic’ turbulence. J. Fluid Mech., 48, 273337, https://doi.org/10.1017/S0022112071001599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Bruyn Kops, S. M., 2015: Classical turbulence scaling and intermittency in stably stratified Boussinesq turbulence. J. Fluid Mech., 775, 436463, https://doi.org/10.1017/jfm.2015.274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Bruyn Kops, S. M., and J. J. Riley, 2019: The effects of stable stratification on the decay of initially isotropic homogeneous turbulence. J. Fluid Mech., 860, 787821, https://doi.org/10.1017/jfm.2018.888.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., and D. R. Caldwell, 1980: The Batchelor spectrum and dissipation in the upper ocean. J. Geophys. Res., 85, 19101916, https://doi.org/10.1029/JC085iC04p01910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferron, B., H. Mercier, K. Speer, A. Gargett, and K. Polzin, 1998: Mixing in the Romanche fracture zone. J. Phys. Oceanogr., 28, 19291945, https://doi.org/10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A., and T. Garner, 2008: Determining Thorpe scales from ship-lowered CTD density profiles. J. Atmos. Oceanic Technol., 25, 16571670, https://doi.org/10.1175/2008JTECHO541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A., P. Hendricks, T. Sanford, T. Osborn, and A. Williams, 1981: A composite spectrum of vertical shear in the upper ocean. J. Phys. Oceanogr., 11, 12581271, https://doi.org/10.1175/1520-0485(1981)011<1258:ACSOVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, C. H., 1980: Fossil turbulence, salinity, and vorticity turbulence in the ocean. Marine Turbulence, J. C. Nihous, Ed., Elsevier Oceanography Series, Vol. 28, Elsevier, 221–257, https://doi.org/10.1016/S0422-9894(08)71223-6.

    • Crossref
    • Export Citation
  • Gregg, M., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, https://doi.org/10.1029/JC094iC07p09686.

  • Gregg, M., 1999: Uncertainties and limitations in measuring ε and χ t. J. Atmos. Oceanic Technol., 16, 14831490, https://doi.org/10.1175/1520-0426(1999)016<1483:UALIMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M., D. Winkel, T. Sanford, and H. Peters, 1996: Turbulence produced by internal waves in the oceanic thermocline at mid and low latitudes. Dyn. Atmos. Oceans, 24, 114, https://doi.org/10.1016/0377-0265(95)00406-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M., E. D’Asaro, J. Riley, and E. Kunze, 2018: Mixing efficiency in the ocean. Annu. Rev. Mar. Sci., 10, 443473, https://doi.org/10.1146/annurev-marine-121916-063643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hebert, D. A., and S. M. de Bruyn Kops, 2006a: Predicting turbulence in flows with strong stable stratification. Phys. Fluids, 18, 066602, https://doi.org/10.1063/1.2204987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hebert, D. A., and S. M. de Bruyn Kops, 2006b: Relationship between vertical shear rate and kinetic energy dissipation rate in stably stratified flows. Geophys. Res. Let., 33, L06602, https://doi.org/10.1029/2005GL025071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., J. Wright, and S. M. Flatté, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91, 84878495, https://doi.org/10.1029/JC091iC07p08487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivey, G. N., and J. Imberger, 1991: On the nature of turbulence in a stratified fluid. Part 1: The energetics of mixing. J. Phys. Oceanogr., 21, 650658, https://doi.org/10.1175/1520-0485(1991)021<0650:OTNOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and C. Garrett, 2004: Effects of noise on Thorpe scales and run lengths. J. Phys. Oceanogr., 34, 23592372, https://doi.org/10.1175/JPO2641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1962: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., 13, 8285, https://doi.org/10.1017/S0022112062000518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242, https://doi.org/10.1017/S0022112005008128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozovatsky, I. D., and H. J. S. Fernando, 2013: Mixing efficiency in natural flows. Philos. Trans. Roy. Soc. London, 371, 20120213, https://doi.org/10.1098/RSTA.2012.0213.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J., and M. Gregg, 2003: Mixing on the late-summer New England shelf – solibores, shear, and stratification. J. Phys. Oceanogr., 33, 14761492, https://doi.org/10.1175/1520-0485(2003)033<1476:MOTLNE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maffioli, A., and P. A. Davidson, 2016: Dynamics of stratified turbulence decaying from a high buoyancy Reynolds number. J. Fluid Mech., 786, 210233, https://doi.org/10.1017/jfm.2015.667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marra, J., R. Bidigare, and T. Dickey, 1990: Nutrients and mixing, chlorophyll and phytoplankton growth. Deep-Sea Res., 37A, 127143, https://doi.org/10.1016/0198-0149(90)90032-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through southern ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., C. P. Caulfield, and W. R. Peltier, 2013: Time-dependent, non-monotonic mixing in stratified turbulent shear flows: Implications for oceanographic estimates of buoyancy flux. J. Fluid Mech., 736, 570593, https://doi.org/10.1017/jfm.2013.551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., C. P. Caulfield, and W. R. Peltier, 2017a: Role of overturns in optimal mixing in stratified mixing layers. J. Fluid Mech., 826, 522552, https://doi.org/10.1017/jfm.2017.374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., H. Salehipour, D. Bouffard, C. P. Caulfield, R. Ferrari, M. Nikurashin, W. R. Peltier, and W. D. Smyth, 2017b: Efficiency of turbulent mixing in the abyssal ocean circulation. Geophys. Res. Lett., 44, 62966306, https://doi.org/10.1002/2016GL072452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mater, B. D., and S. K. Venayagamoorthy, 2014: A unifying framework for parameterizing stably stratified shear-flow turbulence. Phys. Fluids, 26, 036601, https://doi.org/10.1063/1.4868142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mater, B. D., S. K. Venayagamoorthy, L. St. Laurent, and J. N. Moum, 2015: Biases in Thorpe-scale estimates of turbulence dissipation. Part I: Assessments from large-scale overturns in oceanographic data. J. Phys. Oceanogr., 45, 24972521, https://doi.org/10.1175/JPO-D-14-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monismith, S. G., J. R. Koseff, and B. L. White, 2018: Mixing efficiency in the presence of stratification: When is it constant? Geophys. Res. Lett., 45, 56275634, https://doi.org/10.1029/2018GL077229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., 1996: Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res., 101, 14 09514 109, https://doi.org/10.1029/96JC00507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., M. Gregg, R. Lien, and M. Carr, 1995: Comparison of turbulence kinetic energy dissipation rate estimates from two ocean microstructure profilers. J. Atmos. Oceanic Technol., 12, 346366, https://doi.org/10.1175/1520-0426(1995)012<0346:COTKED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local-rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., and C. S. Cox, 1972: Oceanic fine structure. Geophys. Astrophys. Fluid Dyn., 3, 321345, https://doi.org/10.1080/03091927208236085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overholt, M. R., and S. B. Pope, 1998: A deterministic forcing scheme for direct numerical simulations of turbulence. Comput. Fluids, 27, 1128, https://doi.org/10.1016/S0045-7930(97)00019-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R., and S. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 14431451, https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, M., G. Stephenson, M. Inall, C. Balfour, A. Düsterhus, and J. Green, 2015: Turbulence and mixing by internal waves in the Celtic Sea determined from ocean glider microstructure measurements. J. Mar. Syst., 144, 5769, https://doi.org/10.1016/j.jmarsys.2014.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, https://doi.org/10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 806 pp.

    • Crossref
    • Export Citation
  • Portwood, G. D., S. M. de Bruyn Kops, J. R. Taylor, H. Salehipour, and C. P. Caulfield, 2016: Robust identification of dynamically distinct regions in stratified turbulence. J. Fluid Mech., 807, R2, https://doi.org/10.1017/jfm.2016.617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, K. J., and S. M. de Bruyn Kops, 2011: A mathematical framework for forcing turbulence applied to horizontally homogeneous stratified flow. Phys. Fluids, 23, 065110, https://doi.org/10.1063/1.3599704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley, J. J., and S. M. de Bruyn Kops, 2003: Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids, 15, 20472059, https://doi.org/10.1063/1.1578077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rorai, C., P. D. Mininni, and A. Pouquet, 2014: Turbulence comes in bursts in stably stratified flows. Phys. Rev., 89E, 043002, https://doi.org/10.1103/PHYSREVE.89.043002.

    • Search Google Scholar
    • Export Citation
  • Salehipour, H., and W. Peltier, 2015: Diapycnal diffusivity, turbulent Prandtl number and mixing efficiency in Boussinesq stratified turbulence. J. Fluid Mech., 775, 464500, https://doi.org/10.1017/jfm.2015.305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salehipour, H., W. R. Peltier, C. B. Whalen, and J. A. MacKinnon, 2016: A new characterization of the turbulent diapycnal diffusivities of mass and momentum in the ocean. Geophys. Res. Lett., 43, 33703379, https://doi.org/10.1002/2016GL068184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotti, A., 2015: Biases in Thorpe-scale estimates of turbulence dissipation. Part II: energetics arguments and turbulence simulations. J. Phys. Oceanogr., 45, 25222543, https://doi.org/10.1175/JPO-D-14-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shih, L. H., J. R. Koseff, G. N. Ivey, and J. H. Ferziger, 2005: Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech., 525, 193214, https://doi.org/10.1017/S0022112004002587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2000: Length scales of turbulence in stably stratified mixing layers. Phys. Fluids, 12, 13271342, https://doi.org/10.1063/1.870385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, and D. R. Caldwell, 2001: The efficiency of mixing in turbulent patches: Inferences from direct simulations and microstructure observations. J. Phys. Oceanogr., 31, 19691992, https://doi.org/10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., 1998: An update on the energy dissipation rate in isotropic turbulence. Phys. Fluids, 10, 528529, https://doi.org/10.1063/1.869575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., and R. A. Antonia, 1997: The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech., 29, 435472, https://doi.org/10.1146/annurev.fluid.29.1.435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1977: Turbulence and mixing in a Scottish loch. Philos. Trans. Roy. Soc. London, 286A, 125181, https://doi.org/10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2005: The Turbulent Ocean. Cambridge University Press, 439 pp.

    • Crossref
    • Export Citation
  • Waite, M. L., 2011: Stratified turbulence at the buoyancy scale. Phys. Fluids, 23, 066602, https://doi.org/10.1063/1.3599699.

  • Wang, L. P., S. Y. Chen, J. G. Brasseur, and J. C. Wyngaard, 1996: Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. Part 1. Velocity field. J. Fluid Mech., 309, 113156, https://doi.org/10.1017/S0022112096001589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warhaft, Z., 2000: Passive scalar in turbulent flows. Annu. Rev. Fluid Mech., 32, 203240, https://doi.org/10.1146/annurev.fluid.32.1.203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winters, K. B., and E. A. D’Asaro, 1996: Diascalar flux and the rate of fluid mixing. J. Fluid Mech., 317, 179193, https://doi.org/10.1017/S0022112096000717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 526 186 8
PDF Downloads 542 180 7