Ocean Eddy Energetics in the Spectral Space as Revealed by High-Resolution General Circulation Models

Shengpeng Wang Key Laboratory of Physical Oceanography, Institute for Advanced Ocean Studies, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Shengpeng Wang in
Current site
Google Scholar
PubMed
Close
,
Zhao Jing Key Laboratory of Physical Oceanography, Institute for Advanced Ocean Studies, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Zhao Jing in
Current site
Google Scholar
PubMed
Close
,
Qiuying Zhang Key Laboratory of Physical Oceanography, Institute for Advanced Ocean Studies, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
Department of Oceanography, Texas A&M University, College Station, Texas

Search for other papers by Qiuying Zhang in
Current site
Google Scholar
PubMed
Close
,
Ping Chang Key Laboratory of Physical Oceanography, Institute for Advanced Ocean Studies, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
Department of Oceanography, Texas A&M University, College Station, Texas
Department of Atmospheric Science, Texas A&M University, College Station, Texas

Search for other papers by Ping Chang in
Current site
Google Scholar
PubMed
Close
,
Zhaohui Chen Key Laboratory of Physical Oceanography, Institute for Advanced Ocean Studies, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Zhaohui Chen in
Current site
Google Scholar
PubMed
Close
,
Hailong Liu State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Hailong Liu in
Current site
Google Scholar
PubMed
Close
, and
Lixin Wu Key Laboratory of Physical Oceanography, Institute for Advanced Ocean Studies, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Lixin Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the global eddy kinetic energy (EKE) budget in horizontal wavenumber space is analyzed based on 1/10° ocean general circulation model simulations. In both the tropical and midlatitude regions, the barotropic energy conversion from background flow to eddies is positive throughout the wavenumber space and generally peaks at the scale (Le) where EKE reaches its maximum. The baroclinic energy conversion is more pronounced at midlatitudes. It exhibits a dipolar structure with positive and negative values at scales smaller and larger than Le, respectively. Surface wind power on geostrophic flow results in a significant EKE loss around Le but deposits energy at larger scales. The interior viscous dissipation and bottom drag inferred from the pressure flux convergence act as EKE sink terms. The latter is most efficient at Le while the former is more dominant at smaller scales. There is an evident mismatch between EKE generation and dissipation in the spectral space especially at the midlatitudes. This is reconciled by a dominant forward energy cascade on the equator and a dominant inverse energy cascade at the midlatitudes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhao Jing, jingzhao198763@sina.com

Abstract

In this study, the global eddy kinetic energy (EKE) budget in horizontal wavenumber space is analyzed based on 1/10° ocean general circulation model simulations. In both the tropical and midlatitude regions, the barotropic energy conversion from background flow to eddies is positive throughout the wavenumber space and generally peaks at the scale (Le) where EKE reaches its maximum. The baroclinic energy conversion is more pronounced at midlatitudes. It exhibits a dipolar structure with positive and negative values at scales smaller and larger than Le, respectively. Surface wind power on geostrophic flow results in a significant EKE loss around Le but deposits energy at larger scales. The interior viscous dissipation and bottom drag inferred from the pressure flux convergence act as EKE sink terms. The latter is most efficient at Le while the former is more dominant at smaller scales. There is an evident mismatch between EKE generation and dissipation in the spectral space especially at the midlatitudes. This is reconciled by a dominant forward energy cascade on the equator and a dominant inverse energy cascade at the midlatitudes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhao Jing, jingzhao198763@sina.com
Save
  • Arbic, B. K., and Coauthors, 2009: Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models. J. Geophys. Res., 114, C02024, https://doi.org/10.1029/2008JC005072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkan, R., K. B. Winters, and S. G. Llewellyn Smith, 2015: Energy cascades and loss of balance in a reentrant channel forced by wind stress and buoyancy fluxes. J. Phys. Oceanogr., 45, 272293, https://doi.org/10.1175/JPO-D-14-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, https://doi.org/10.1029/JC080i003p00320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., F. O. Bryan, and R. J. Small, 2015: Bjerknes-like compensation in the wintertime North Pacific. J. Phys. Oceanogr., 45, 13391355, https://doi.org/10.1175/JPO-D-14-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brüggemann, N., and C. Eden, 2015: Routes to dissipation under different dynamical conditions. J. Phys. Oceanogr., 45, 21492168, https://doi.org/10.1175/JPO-D-14-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 22562269, https://doi.org/10.1175/2008JPO3810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, https://doi.org/10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, https://doi.org/10.1175/JPO-D-14-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., and A. M. Hogg, 2010: Topographic inviscid dissipation of balanced flow. Ocean Modell., 32, 113, https://doi.org/10.1016/j.ocemod.2009.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubovikov, M. S., and V. M. Canuto, 2005: Dynamic model of mesoscale eddies. Eddy parameterization for coarse resolution ocean circulation models. Geophys. Fluid Dyn., 99, 1947, https://doi.org/10.1080/03091920412331336406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Fjørtoft, R., 1953: On the changes in the spectral distribution of kinetic energy for two-dimensional, nondivergent flow. Tellus, 5, 225230, https://doi.org/10.3402/tellusa.v5i3.8647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frenger, I., N. Gruber, R. Knutti, and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608612, https://doi.org/10.1038/ngeo1863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, J. K., P. Kållberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1999: ECMWF Re-Analysis Project Report Series: 1. ERA-15 description. ECMWF Doc., 84 pp.

  • Grant, A. L., and S. E. Belcher, 2011: Wind-driven mixing below the oceanic mixed layer. J. Phys. Oceanogr., 41, 15561575, https://doi.org/10.1175/JPO-D-10-05020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R., and L. Thomas, 2016: Modulation of tropical instability wave intensity by equatorial Kelvin waves. J. Phys. Oceanogr., 46, 26232643, https://doi.org/10.1175/JPO-D-16-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 33283345, https://doi.org/10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, J. H., 1973: Vertical mixing in the equatorial undercurrent. J. Phys. Oceanogr., 3, 286296, https://doi.org/10.1175/1520-0485(1973)003<0286:VMITEU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, P., B. L. Hua, G. Lapeyre, X. Capet, S. Le Gentil, and H. Sasaki, 2008: Upper-ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr., 38, 17481763, https://doi.org/10.1175/2007JPO3773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1991: Dissipation of energy in the locally isotropic turbulence. Proc. Roy. Soc. London, 434A, 1517, https://doi.org/10.1098/rspa.1991.0076.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. Tech. Note NCAR/TN-460+STR, 105 pp., https://doi.org/10.5065/D6KK98Q6.

    • Crossref
    • Export Citation
  • Liu, C., K. Armin, Z. Liu, F. Wang, and S. Detlef, 2016: Deep-reaching thermocline mixing in the equatorial pacific cold tongue. Nat. Commun., 7, 11576, https://doi.org/10.1038/ncomms11576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., Y. Yu, P. Lin, and F. Wang, 2014: High-Resolution LICOM. Flexible Global Ocean-Atmosphere-Land System Model, Springer, 321331 pp., https://doi.org/10.1007/978-3-642-41801-3_38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., X. Capet, C. Menkes, and S. C. Kennan, 2011: Submesoscale dynamics in tropical instability waves. Ocean Modell., 39, 3146, https://doi.org/10.1016/j.ocemod.2011.04.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masina, S., S. G. H. Philander, and A. B. G. Bush, 1999: An analysis of tropical instability waves in a numerical model of the Pacific Ocean 2. Generation and energetics of the waves. J. Geophys. Res., 104, 29 63729 661, https://doi.org/10.1029/1999JC900226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meijers, A., N. Bindoff, and J. Roberts, 2007: On the total, mean, and eddy heat and freshwater transports in the Southern Hemisphere of a 1/8° × 1/8° global ocean model. J. Phys. Oceanogr., 37, 277295, https://doi.org/10.1175/JPO3012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. McWilliams, and C. James, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, https://doi.org/10.1017/S0022112009993272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., J. C. McWilliams, and M. J. Molemaker, 2005: Routes to dissipation in the ocean: The 2D/3D turbulence conundrum. Marine Turbulence: Theories, Observations, and Models, H. Z. Baumert, J. Simpson, and J. Sündermann, Eds., Cambridge University Press, 397405.

    • Search Google Scholar
    • Export Citation
  • Ni, R., G. A. Voth, and N. T. Ouellette, 2014: Extracting turbulent spectral transfer from under-resolved velocity fields. Phys. Fluids, 26, 105107, https://doi.org/10.1063/1.4898866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, https://doi.org/10.1029/2011GL046576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1978: Instabilities of zonal equatorial currents. J. Geophys. Res., 83, 36793682, https://doi.org/10.1029/JC083iC07p03679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 1977: The dynamics of unsteady currents. Marine Modeling, E. D. Goldberg, Ed., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 6, Wiley, 189–318.

  • Roske, F., 2001: An atlas of surface fluxes based on the ECMWF re-analysis? A climatological dataset of force global ocean general circulation models. Max-Planck Institut fur Meteorologie Rep. 323, 26 pp.

  • Roullet, G., J. C. McWilliams, X. Capet, and M. J. Molemaker, 2012: Properties of steady geostrophic turbulence with isopycnal outcropping. J. Phys. Oceanogr., 42, 1838, https://doi.org/10.1175/JPO-D-11-09.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlösser, F., and C. Eden, 2007: Diagnosing the energy cascade in a model of the North Atlantic. Geophys. Res. Lett., 34, L02604, https://doi.org/10.1029/2006GL027813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, https://doi.org/10.1175/JPO2771.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and Y. Xu, 2009: An update on the wind power input to the surface geostrophic flow of the World Ocean. Deep-Sea Res. I, 56, 295304, https://doi.org/10.1016/j.dsr.2008.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., R. A. Tomas, and F. O. Bryan, 2014: Storm track response to ocean fronts in a global high-resolution climate model. Climate Dyn., 43, 805828, https://doi.org/10.1007/s00382-013-1980-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instability in earth’s oceans. J. Mar. Res., 65, 655683, https://doi.org/10.1357/002224007783649484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1998: On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr., 28, 727739, https://doi.org/10.1175/1520-0485(1998)028<0727:OECETA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sumata, H., and Coauthors, 2010: Effect of eddy transport on the nutrient supply into the euphotic zone simulated in an eddy-permitting ocean ecosystem model. J. Mar. Syst., 83, 6787, https://doi.org/10.1016/j.jmarsys.2010.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, C. Hill, and K. S. Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, https://doi.org/10.1175/2011JPO4404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, J. S., C. Eden, I. Fast, H. Haak, D. Hernaìndez-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the world ocean based on the 1/10 STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and R. X. Huang, 2004a: Wind energy input to the Ekman layer. J. Phys. Oceanogr., 34, 12671275, https://doi.org/10.1175/1520-0485(2004)034<1267:WEITTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W., and R. X. Huang, 2004b: Wind energy input to the surface waves. J. Phys. Oceanogr., 34, 12761280, https://doi.org/10.1175/1520-0485(2004)034<1276:WEITTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., Z. Liu, and C. Pang, 2015: Geographical distribution and anisotropy of the inverse kinetic energy cascade, and its role in the eddy equilibrium processes. J. Geophys. Res. Oceans, 120, 48914906, https://doi.org/10.1002/2014JC010476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., Z. Jing, H. Liu, and L. Wu, 2018: Spatial and seasonal variations of submesoscale eddies in the eastern tropical Pacific Ocean. J. Phys. Oceanogr., 48, 101116, https://doi.org/10.1175/JPO-D-17-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y., Z. Wang, and C. Liu, 2017: On the response of the Lorenz energy cycle for the Southern Ocean to intensified westerlies. J. Geophys. Res. Oceans, 122, 24652493, https://doi.org/10.1002/2016JC012539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y., H. Liu, and P. Lin, 2012: A quasi-global 1/10° eddy-resolving ocean general circulation model and its preliminary results. Chin. Sci. Bull., 57, 39083916, https://doi.org/10.1007/s11434-012-5234-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., and D. P. Marshall, 2013: Vertical eddy energy fluxes in the North Atlantic subtropical and subpolar gyres. J. Phys. Oceanogr., 43, 95103, https://doi.org/10.1175/JPO-D-12-021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1072 324 32
PDF Downloads 894 246 21