Observations of Island Wakes at High Rossby Numbers: Evolution of Submesoscale Vortices and Free Shear Layers

Ming-Huei Chang Institute of Oceanography, National Taiwan University, Taipei, Taiwan

Search for other papers by Ming-Huei Chang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6409-7652
,
Sen Jan Institute of Oceanography, National Taiwan University, Taipei, Taiwan

Search for other papers by Sen Jan in
Current site
Google Scholar
PubMed
Close
,
Chih-Lun Liu Institute of Oceanography, National Taiwan University, Taipei, Taiwan

Search for other papers by Chih-Lun Liu in
Current site
Google Scholar
PubMed
Close
,
Yu-Hsin Cheng Institute of Oceanography, National Taiwan University, Taipei, Taiwan

Search for other papers by Yu-Hsin Cheng in
Current site
Google Scholar
PubMed
Close
, and
Vigan Mensah Institute of Oceanography, National Taiwan University, Taipei, Taiwan, and Institute of Low Temperature Science, Hokkaido University, Hokkaido, Japan

Search for other papers by Vigan Mensah in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Oceanic vortex evolution on the lee side of Taiwan’s Green Island (~7 km in diameter), where the Kuroshio flows at a speed of 1–1.5 m s−1, is observationally examined and compared to theories and the preceding results of laboratory experiments. In the near wake, recirculation occurs with a relative vorticity of ζ ~ 20f (where f is the planetary vorticity) and subsequently sheds at a combination of periods resulting from the tidal oscillations and the intrinsic time scale of eddy evolution. The tidal oscillations are the predominant processes. Our analysis suggests that an island positioned in the Kuroshio with periodic and cross-stream tidal excursions is analogous to a cross-stream oscillating cylinder. Consequently, the shedding period of the vortex is synchronized to a tidal period occurring close to the intrinsic period. The free shear layer, which is characterized by an ~30f relative vorticity band (2 km wide) and a wavy thermal front, develops between the Kuroshio and recirculation. The frontal wave occurring over a time period of 0.5–2 h resembles Kelvin–Helmholtz instability corresponding to high Re values. For the far wake, repeated cross-wake surveys suggest that cyclonic and anticyclonic vortices are alternatively present at a period close to the period of M2 tides in agreement with near-wake measurements. Repeated along-wake surveys reveal a cyclonic eddy shedding downstream at a speed of 0.35 m s−1, 1/3 of the upstream current speed, from the near wake. In comparing our observations with the results of previous water tank experiments, an Re value of O(103) for the submesoscale wake regime is expected.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming-Huei Chang, minghueichang@ntu.edu.tw

Abstract

Oceanic vortex evolution on the lee side of Taiwan’s Green Island (~7 km in diameter), where the Kuroshio flows at a speed of 1–1.5 m s−1, is observationally examined and compared to theories and the preceding results of laboratory experiments. In the near wake, recirculation occurs with a relative vorticity of ζ ~ 20f (where f is the planetary vorticity) and subsequently sheds at a combination of periods resulting from the tidal oscillations and the intrinsic time scale of eddy evolution. The tidal oscillations are the predominant processes. Our analysis suggests that an island positioned in the Kuroshio with periodic and cross-stream tidal excursions is analogous to a cross-stream oscillating cylinder. Consequently, the shedding period of the vortex is synchronized to a tidal period occurring close to the intrinsic period. The free shear layer, which is characterized by an ~30f relative vorticity band (2 km wide) and a wavy thermal front, develops between the Kuroshio and recirculation. The frontal wave occurring over a time period of 0.5–2 h resembles Kelvin–Helmholtz instability corresponding to high Re values. For the far wake, repeated cross-wake surveys suggest that cyclonic and anticyclonic vortices are alternatively present at a period close to the period of M2 tides in agreement with near-wake measurements. Repeated along-wake surveys reveal a cyclonic eddy shedding downstream at a speed of 0.35 m s−1, 1/3 of the upstream current speed, from the near wake. In comparing our observations with the results of previous water tank experiments, an Re value of O(103) for the submesoscale wake regime is expected.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming-Huei Chang, minghueichang@ntu.edu.tw
Save
  • Apel, J. R., 1987: Principles of Ocean Physics. Academic Press, 631 pp.

  • Barkley, R. A., 1972: Johnston’s atoll’s wake. J. Mar. Res., 30, 201216.

  • Berger, E., and R. Wille, 1972: Periodic flow phenomena. Annu. Rev. Fluid Mech., 4, 313340, https://doi.org/10.1146/annurev.fl.04.010172.001525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, R. E. D., and A. Y. Hassan, 1964: The lift and drag forces on a circular cylinder oscillating in a flowing fluid. Proc. Roy. Soc. London, 277A, 5175, https://doi.org/10.1098/rspa.1964.0005.

    • Search Google Scholar
    • Export Citation
  • Black, K. P., and S. L. Gay, 1987: Eddy formation in unsteady flows. J. Geophys. Res., 92, 95149522, https://doi.org/10.1029/JC092iC09p09514.

  • Caldeira, R. M. A., and P. Sangrà, 2012: Complex geophysical wake flows. Ocean Dyn., 62, 683700, https://doi.org/10.1007/s10236-012-0528-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, M.-H., T.-Y. Tang, C.-R. Ho, and S.-Y. Chao, 2013: Kuroshio-induced wake in the lee of Green Island off Taiwan. J. Geophys. Res. Oceans, 118, 15081519, https://doi.org/10.1002/jgrc.20151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, M.-H., S.-Y. Jheng, and R.-C. Lien, 2016: Trains of large Kelvin-Helmholtz billows observed in the Kuroshio above a seamount. Geophys. Res. Lett., 43, 86548661, https://doi.org/10.1002/2016GL069462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, M.-H., S. Jan, V. Mensah, M. Andres, L. Rainville, Y.-J. Yang, and Y.-H. Cheng, 2018: Zonal migration and transport variations of the Kuroshio east of Taiwan induced by eddy impingements. Deep-Sea Res. I, 131, 115, https://doi.org/10.1016/j.dsr.2017.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiou, M. D., S. Jan, J. Wang, R. C. Lien, and H. Chien, 2011: Sources of baroclinic tidal energy in the Gaoping Submarine Canyon off southwestern Taiwan. J. Geophys. Res., 116, C12016, https://doi.org/10.1029/2011JC007366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coutis, P., and J. Middleton, 1999: Flow-topography interaction in the vicinity of an isolated, deep ocean island. Deep-Sea Res. I, 46, 16331652, https://doi.org/10.1016/S0967-0637(99)00007-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denniss, T., J. H. Middleton, and R. Manasseh, 1995: Recirculation in the lee of complicated headlands: A case study of Bass Point. J. Geophys. Res., 100, 16 08716 101, https://doi.org/10.1029/95JC01279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., J. C. McWilliams, and A. F. Shchepetkin, 2007: Island wakes in deep water. J. Phys. Oceanogr., 37, 962981, https://doi.org/10.1175/JPO3047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doty, M. S., and M. Oguri, 1956: The island mass effect. ICES J. Mar. Sci., 22, 3337, https://doi.org/10.1093/icesjms/22.1.33.

  • Farmer, D., R. Pawlowicz, and R. Jiang, 2002: Tilting separation flows: A mechanism for intense vertical mixing in the coastal ocean. Dyn. Atmos. Oceans, 36, 4358, https://doi.org/10.1016/S0377-0265(02)00024-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grinsted, A., J. C. Moore, and S. Jevrejeva, 2004: Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophys., 11, 561566, https://doi.org/10.5194/npg-11-561-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasegawa, D., H. Yamazaki, R. G. Lueck, and L. Seuront, 2004: How islands stir and fertilize the upper ocean. Geophys. Res. Lett., 31, L16303, https://doi.org/10.1029/2004GL020143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasegawa, D., M. R. Lewis, and A. Gangopadhyay, 2009: How islands cause phytoplankton to bloom in their wakes? Geophys. Res. Lett., 36, L20605, https://doi.org/10.1029/2009GL039743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., E. D. Barton, and J. H. Simpson, 1990: The effects of flow disturbance by an oceanic island. J. Mar. Res., 48, 5573, https://doi.org/10.1357/002224090784984623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heywood, K. J., D. P. Stevens, and G. R. Bigg, 1996: Eddy formation behind the tropical island of Aldabra. Deep-Sea Res. I, 43, 555578, https://doi.org/10.1016/0967-0637(96)00097-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., M.-H. Chang, C.-C. Lin, S.-J. Huang, and C.-R. Ho, 2017: Investigation of the island-induced ocean vortex train of the Kuroshio Current using satellite imagery. Remote Sens. Environ., 193, 5464, https://doi.org/10.1016/j.rse.2017.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, T. W., J. M. Liau, S. J. Liang, S. Y. Tzang, and D. J. Doong, 2015: Assessment of Kuroshio current power test site of Green Island, Taiwan. Renew. Energy, 81, 853863, https://doi.org/10.1016/j.renene.2015.03.089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, S.-J., C.-R. Ho, S.-L. Lin, and S.-J. Liang, 2014: Spatial-temporal scales of Green Island wake due to passing of the Kuroshio current. Int. J. Remote Sens., 35, 44844495, https://doi.org/10.1080/01431161.2014.916047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jan, S., R.-C. Lien, and C.-H. Ting, 2008: Numerical study of baroclinic tides in Luzon Strait. J. Oceanogr., 64, 789802, https://doi.org/10.1007/s10872-008-0066-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jan, S., V. Mensah, M. Andres, M.-H. Chang, and Y.-J. Yang, 2017: Eddy-Kuroshio interactions: Local and remote effects. J. Geophys. Res. Oceans, 122, 97449764, https://doi.org/10.1002/2017JC013476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., and I. M. Cohen, 2004: Fluid Mechanics. 3rd ed. Academic Press, 497 pp.

  • Liu, C.-H., and M.-H. Chang, 2018: Numerical studies of submesoscale island wakes in the Kuroshio. J. Geophys. Res. Oceans, 123, 56695687, https://doi.org/10.1029/2017JC013501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, J., J. McWilliams, and W. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, https://doi.org/10.1175/JPO-D-13-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neill, S. P., and A. J. Elliott, 2004: Observations and simulations of an unsteady island wake in the Firth of Forth, Scotland. Ocean Dyn., 54, 324332, https://doi.org/10.1007/s10236-003-0084-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nencioli, F., F. d’Ovidio, A. M. Doglioli, and A. A. Petrenko, 2013: In situ estimates of submesoscale horizontal eddy diffusivity across an ocean front. J. Geophys. Res. Oceans, 118, 70667080, https://doi.org/10.1002/2013JC009252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perfect, B., N. Kumar, and J. J. Riley, 2018: Vortex structures in the wake of an idealized seamount in rotating, stratified flow. Geophys. Res. Lett., 45, 90989105, https://doi.org/10.1029/2018GL078703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prasad, A., and C. H. K. Williamson, 1997: The instability of the shear layer separating from a bluff body. J. Fluid Mech., 333, 375402, https://doi.org/10.1017/S0022112096004326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Provansal, M., C. Mathis, and L. Boyer, 1987: Bénard-von Kármán instability: Transient and forced regimes. J. Fluid Mech., 182, 122, https://doi.org/10.1017/S0022112087002222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Signell, R. P., and W. R. Geyer, 1991: Transient eddy formation around headlands. J. Geophys. Res., 96, 25612575, https://doi.org/10.1029/90JC02029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teague, W. J., P. A. Hwang, G. A. Jacobs, J. W. Book, and H. T. Perkins, 2005: Transport variability across the Korea/Tsushima Strait and the Tsushima Island Wake. Deep-Sea Res. II, 52, 17841801, https://doi.org/10.1016/j.dsr2.2003.07.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, C. H. K., 1996a: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech., 28, 477539, https://doi.org/10.1146/annurev.fl.28.010196.002401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, C. H. K., 1996b: Three-dimensional wake transition. J. Fluid Mech., 328, 345407, https://doi.org/10.1017/S0022112096008750.

  • Williamson, C. H. K., and A. Roshko, 1988: Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct., 2, 355381, https://doi.org/10.1016/S0889-9746(88)90058-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williamson, C. H. K., and G. L. Brown, 1998: A series in 1/√Re to represent the Strouhal-Reynolds number relationship of the cylinder wake. J. Fluids Struct., 12, 10731085, https://doi.org/10.1006/jfls.1998.0184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolanski, E., and W. M. Hamner, 1988: Topographically controlled fronts in the ocean and their biological influence. Science, 241, 177181, https://doi.org/10.1126/science.241.4862.177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Q., H. Lin, J. Meng, X. Hu, Y. T. Song, Y. Zhang, and C. Li, 2008: Sub-mesoscale ocean vortex trains in the Luzon Strait. J. Geophys. Res., 113, C04032, https://doi.org/10.1029/2008JC005065.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 871 268 29
PDF Downloads 797 250 30