Energy Sinks for Lee Waves in Shear Flow

Eric Kunze Northwest Research Associates, Redmond, Washington

Search for other papers by Eric Kunze in
Current site
Google Scholar
PubMed
Close
and
Ren-Chieh Lien Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Ren-Chieh Lien in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Microstructure measurements in Drake Passage and on the flanks of Kerguelen Plateau find turbulent dissipation rates ε on average factors of 2–3 smaller than linear lee-wave generation predictions, as well as a factor of 3 smaller than the predictions of a well-established parameterization based on finescale shear and strain. Here, the possibility that these discrepancies are a result of conservation of wave action E/ωL = E/|kU| is explored. Conservation of wave action will transfer a fraction of the lee-wave radiation back to the mean flow if the waves encounter weakening currents U, where the intrinsic or Lagrangian frequency ωL = |kU| ↓ |f| and k the along-stream horizontal wavenumber, where kUkV. The dissipative fraction of power that is lost to turbulence depends on the Doppler shift of the intrinsic frequency between generation and breaking, hence on the topographic height spectrum and bandwidth N/f. The partition between dissipation and loss to the mean flow is quantified for typical topographic height spectral shapes and N/f ratios found in the abyssal ocean under the assumption that blocking is local in wavenumber. Although some fraction of lee-wave generation is always dissipated in a rotating fluid, lee waves are not as large a sink for balanced energy or as large a source for turbulence as previously suggested. The dissipative fraction is 0.44–0.56 for topographic spectral slopes and buoyancy frequencies typical of the deep Southern Ocean, insensitive to flow speed U and topographic splitting. Lee waves are also an important mechanism for redistributing balanced energy within their generating bottom current.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eric Kunze, kunze@nwra.com

Abstract

Microstructure measurements in Drake Passage and on the flanks of Kerguelen Plateau find turbulent dissipation rates ε on average factors of 2–3 smaller than linear lee-wave generation predictions, as well as a factor of 3 smaller than the predictions of a well-established parameterization based on finescale shear and strain. Here, the possibility that these discrepancies are a result of conservation of wave action E/ωL = E/|kU| is explored. Conservation of wave action will transfer a fraction of the lee-wave radiation back to the mean flow if the waves encounter weakening currents U, where the intrinsic or Lagrangian frequency ωL = |kU| ↓ |f| and k the along-stream horizontal wavenumber, where kUkV. The dissipative fraction of power that is lost to turbulence depends on the Doppler shift of the intrinsic frequency between generation and breaking, hence on the topographic height spectrum and bandwidth N/f. The partition between dissipation and loss to the mean flow is quantified for typical topographic height spectral shapes and N/f ratios found in the abyssal ocean under the assumption that blocking is local in wavenumber. Although some fraction of lee-wave generation is always dissipated in a rotating fluid, lee waves are not as large a sink for balanced energy or as large a source for turbulence as previously suggested. The dissipative fraction is 0.44–0.56 for topographic spectral slopes and buoyancy frequencies typical of the deep Southern Ocean, insensitive to flow speed U and topographic splitting. Lee waves are also an important mechanism for redistributing balanced energy within their generating bottom current.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eric Kunze, kunze@nwra.com
Save
  • Alexander, M. J., 2003: Gravity wave fluxes. Encyclopedia of Atmospheric Sciences, Academic Press, 16991705, https://doi.org/10.1016/B0-12-227090-8/00309-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., and G. Flierl, 2004: Baroclinically unstable geostrophic turbulence in the limit of strong and weak bottom Ekman friction: Application to mid-ocean eddies. J. Phys. Oceanogr., 34, 22572273, https://doi.org/10.1175/1520-0485(2004)034<2257:BUGTIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., and Coauthors, 2009: Estimates of bottom flows and bottom-boundary-layer dissipation of the oceanic general circulation from global high-resolution models. J. Geophys. Res., 114, C02024, https://doi.org/10.1029/2008JC005072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1995: Topographic Effects in Stratified Flows. Cambridge University Press, 482 pp.

  • Bell, T. H., 1975: Topographically-generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, https://doi.org/10.1029/JC080i003p00320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biello, J., and A. Majda, 2005: A new multiscale model for the Madden–Julian oscillation. J. Atmos. Sci., 62, 16941721, https://doi.org/10.1175/JAS3455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brearley, J. A., K. L. Sheen, A. C. Naveira Garabato, D. A. Smeed, and S. Waterman, 2013: Eddy-induced modulation of turbulent dissipation over rough topography in the Southern Ocean. J. Phys. Oceanogr., 43, 22882308, https://doi.org/10.1175/JPO-D-12-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., and C. J. R. Garrett, 1968: Wavetrains in inhomogeneous moving media. Proc. Roy. Soc. London, 302A, 529554, https://doi.org/10.1098/rspa.1968.0034.

    • Search Google Scholar
    • Export Citation
  • Cusack, J. M., A. C. Naveira Garabato, D. A. Smeed, and J. B. Girton, 2017: Observation of a large lee wave in the Drake Passage. J. Phys. Oceanogr., 47, 793810, https://doi.org/10.1175/JPO-D-16-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1988: Generation of submesoscale vortices: A new mechanism. J. Geophys. Res., 93, 66856693, https://doi.org/10.1029/JC093iC06p06685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., C. M. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, https://doi.org/10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ. Oslo, 22, 123.

  • Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources and sinks. Annu. Rev. Fluid Mech., 41, 253282, https://doi.org/10.1146/annurev.fluid.40.111406.102139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garner, S. T., 2005: A topographic-drag closure built on an analytical base flux. J. Atmos. Sci., 62, 23022315, https://doi.org/10.1175/JAS3496.1.

  • Gille, S. T., 1997: The Southern Ocean momentum balance: Evidence for topographic effects from numerical model output and altimeter data. J. Phys. Oceanogr., 27, 22192232, https://doi.org/10.1175/1520-0485(1997)027<2219:TSOMBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, J. A., 2010: Global prediction of abyssal hill root-mean-square heights from small-scale altimetric gravity variability. J. Geophys. Res., 115, B12104, https://doi.org/10.1029/2010JB007867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and T. H. Jordon, 1988: Stochastic modeling of seafloor morphology: Inversion of Sea beam data for second-order statistics. J. Geophys. Res., 93, 13 58913 608, https://doi.org/10.1029/JB093iB11p13589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and B. K. Arbic, 2010: Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo-spreading rate, paleo-ridge orientation and sediment thickness. Ocean Modell., 32, 3643, https://doi.org/10.1016/j.ocemod.2009.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and E. Kunze, 1991: Shear and strain in Santa Monica Basin. J. Geophys. Res., 96, 16 70916 719, https://doi.org/10.1029/91JC01385.

  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial ocean waters. Nature, 422, 513515, https://doi.org/10.1038/nature01507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and M. J. Alexander, 2000: The role of waves in the transport circulation of the middle atmosphere. Atmospheric Science Across the Stratopause, Geophys. Monogr., Vol. 123, Amer. Geophys. Union, 21–35.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ijichi, T., and T. Hibiya, 2017: Eikonal calculations for energy transfer in the deep-ocean internal wave field near mixing hotspots. J. Phys. Oceanogr., 47, 199210, https://doi.org/10.1175/JPO-D-16-0093.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., 2018: Nonpropagating form drag and turbulence due to stratified flow over large-scale abyssal-hill topography. J. Phys. Oceanogr., 48, 23832395, https://doi.org/10.1175/JPO-D-17-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2017: Internal-wave-driven mixing: Global geography and budgets. J. Phys. Oceanogr., 47, 13251345, https://doi.org/10.1175/JPO-D-16-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., and S. G. Llewellyn Smith, 2004: The role of small-scale topography in turbulent mixing of the global ocean. Oceanography, 17, 5560, https://doi.org/10.5670/oceanog.2004.67.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., R.W. Schmitt and J.M. Toole, 1995: The energy balance in a warm-core ring’s near-inertial critical layer. J. Phys. Oceanogr., 25, 942957, https://doi.org/10.1175/1520-0485(1995)025<0942:TEBIAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, https://doi.org/10.1175/JPO2926.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R., and J. R. Holton, 1968: A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25, 10951107, https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, R. R., 1955: Some aspects of the flow of stratified fluids. Part 3: Continuous density gradient. Tellus, 7, 341357, https://doi.org/10.3402/tellusa.v7i3.8900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically-excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and M. Nikurashin, 2014: Sensitivity of the ocean state to lee-wave-driven mixing. J. Phys. Oceanogr., 44, 900921, https://doi.org/10.1175/JPO-D-13-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, https://doi.org/10.1017/S0022112009993272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musgrave, R. C., R. Pinkel, J. A. MacKinnon, and J. R. Mazloff, 2016: Stratified tidal flow over a tall ridge above and below the turning latitude. J. Fluid Mech., 793, 933957, https://doi.org/10.1017/jfm.2016.150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, E. Kunze, and A. Mahadevan, 2015: Spontaneous generation of internal waves by the Kuroshio Front. J. Phys. Oceanogr., 45, 23812406, https://doi.org/10.1175/JPO-D-14-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004a: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, https://doi.org/10.1126/science.1090929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., K. I. C. Oliver, A. J. Watson, and M. J. Messias, 2004b: Turbulent diapycnal mixing in the Nordic Seas. J. Geophys. Res., 109, https://doi.org/10.1029/2004JC002411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010a: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40, 10551074, https://doi.org/10.1175/2009JPO4199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010b: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40, 20252042, https://doi.org/10.1175/2010JPO4315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, https://doi.org/10.1029/2011GL046576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., G. K. Vallis, and A. Adcroft, 2013: Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nat. Geosci., 6, 4851, https://doi.org/10.1038/ngeo1657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., R. Ferrari, N. Grisouard, and K. Polzin, 2014: The impact of finite-amplitude bottom topography on internal-wave generation in the Southern Ocean. J. Phys. Oceanogr., 44, 29382950, https://doi.org/10.1175/JPO-D-13-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and F. Zhang, 2014: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., 52, 3376, https://doi.org/10.1002/2012RG000419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2010: Mesoscale eddy-internal wave coupling. Part II: Energetics and results from PolyMode. J. Phys. Oceanogr., 40, 789801, https://doi.org/10.1175/2009JPO4039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterization of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, https://doi.org/10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1970: Edge-, bottom- and Rossby waves in a rotating stratified fluid. Geophys. Astrophys. Fluid Dyn., 1, 273302, https://doi.org/10.1080/03091927009365776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scinocca, J., and N. McFarlane, 2000: The parameterization of drag induced by stratified flow over anisotropic orography. Quart. J. Roy. Meteor. Soc., 126, 23532393, https://doi.org/10.1002/qj.49712656802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and Y. Xu, 2009: An update on the wind power input to the surface geostrophic flow of the world ocean. Deep-Sea Res. I, 56, 295304, https://doi.org/10.1016/j.dsr.2008.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., J. A. Goff, A. C. Naveira Garabato, and A. J. G. Nurser, 2011: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res., 116, C09029, https://doi.org/10.1029/2011JC007005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen, A., R. B. Scott, and B. K. Arbic, 2008: Global energy dissipation rate of deep-ocean low-frequency flows by quadratic bottom-boundary-layer drag: Computations from current-meter data. Geophys. Res. Lett., 35, L09606, https://doi.org/10.1029/2008GL033407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., 2019: Spontaneous generation of internal waves. Phys. Today, 72, 3439, https://doi.org/10.1063/PT.3.4225.

  • Shakespeare, C. J., and J. R. Taylor, 2013: A generalized mathematical model of geostrophic adjustment and frontogenesis: Uniform potential vorticity. J. Fluid Mech., 736, 366413, https://doi.org/10.1017/jfm.2013.526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and J. R. Taylor, 2014: The spontaneous generation of inertia-gravity waves during frontogenesis forced by large strain: Theory. J. Fluid Mech., 757, 817853, https://doi.org/10.1017/jfm.2014.514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and J. R. Taylor, 2015: The spontaneous generation of inertia-gravity waves during frontogenesis forced by large strain: Numerical solutions. J. Fluid Mech., 772, 508534, https://doi.org/10.1017/jfm.2015.197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and A. McC. Hogg, 2017: Spontaneous surface generation and interior amplification of internal waves in a regional-scale ocean model. J. Phys. Oceanogr., 47, 811826, https://doi.org/10.1175/JPO-D-16-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., and Coauthors, 2013: Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). J. Geophys. Res. Oceans, 118, 27742792, https://doi.org/10.1002/jgrc.20217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, https://doi.org/10.1126/science.277.5334.1956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. S., A. C. Naveira Garabato, J. R. Ledwell, A. M. Thurnherr, J. M. Toole, and A. J. Watson, 2012: Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr., 42, 21432152, https://doi.org/10.1175/JPO-D-12-027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, A., and T. Hibiya, 2019: Assessment of finescale parameterizations of deep-ocean mixing in the presence of geostrophic current shear: Results of microstructure measurements in the Antarctic Circumpolar Current region. J. Geophys. Res. Oceans, 124, 135153, https://doi.org/10.1029/2018JC014030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trossman, D. S., S. Waterman, K. L. Polzin, B. K. Arbic, S. T. Garner, A. C. Naveira Garabato, and K. L. Sheen, 2015: Internal lee-wave closures: Parameter sensitivity and comparison to observations. J. Geophys. Res. Oceans, 120, 79978019, https://doi.org/10.1002/2015JC010892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trossman, D. S., B. K. Arbic, J. G. Richman, S. T. Garner, S. R. Jayne, and A. J. Wallcraft, 2016: Impact of topographic internal lee-wave drag on an eddying global ocean model. Ocean Modell., 97, 109128, https://doi.org/10.1016/j.ocemod.2015.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, J.-S., H. Sasaki, and J. Marotzke, 2007: Wind-generated power input to the deep ocean: An estimate using a 1/10° general circulation model. J. Phys. Oceanogr., 37, 657672, https://doi.org/10.1175/JPO3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., K. L. Polzin, and A. C. Naveira Garabato, 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259282, https://doi.org/10.1175/JPO-D-11-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., K. L. Polzin, A. C. Naveira Garabato, K. L. Sheen, and A. Forryan, 2014: Suppression of internal-wave breaking in the Antarctic Circumpolar Current near topography. J. Phys. Oceanogr., 44, 14661492, https://doi.org/10.1175/JPO-D-12-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from ARGO profiles. Geophys. Res. Lett., 39, L18612, https://doi.org/10.1029/2012GL053196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. J., R. B. Scott, P. Ailliot, and D. Furnival, 2014: Lee-wave generation rates in the deep ocean. Geophys. Res. Lett., 41, 24342440, https://doi.org/10.1002/2013GL059087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Jing, S. Riser, and M. Visbeck, 2011: Seasonal and spatial variations of Southern Ocean diapycnal mixing from ARGO profiling floats. Nat. Geosci., 4, 363366, https://doi.org/10.1038/ngeo1156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322339, https://doi.org/10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., M. Nikurashin, A. M. Hogg, and B. M. Sloyan, 2018: Energy loss from transient eddies due to lee-wave generation in the Southern Ocean. J. Phys. Oceanogr., 48, 28672885, https://doi.org/10.1175/JPO-D-18-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., M. Nikurashin, H. Sasaki, H. Sun, and J. Tian, 2019: Dissipation of mesoscale eddies and its contribution to mixing in the northern South China Sea. Sci. Rep., 556, https://doi.org/10.1038/s41598-018-36610-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, K., and M. Nikurashin, 2019: Downstream propagation and remote dissipation of internal waves in the Southern Ocean. J. Phys. Oceanogr., 49, 18731887, https://doi.org/10.1175/JPO-D-18-0134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 694 260 78
PDF Downloads 502 104 5