Horizontal Residual Mean: Addressing the Limited Spatial Resolution of Ocean Models

Yuehua Li School of Mathematics and Statistics, University of New South Wales, Kensington, New South Wales, Australia

Search for other papers by Yuehua Li in
Current site
Google Scholar
PubMed
Close
,
Trevor McDougall School of Mathematics and Statistics, University of New South Wales, Kensington, New South Wales, Australia

Search for other papers by Trevor McDougall in
Current site
Google Scholar
PubMed
Close
,
Shane Keating School of Mathematics and Statistics, University of New South Wales, Kensington, New South Wales, Australia

Search for other papers by Shane Keating in
Current site
Google Scholar
PubMed
Close
,
Casimir de Lavergne LOCEAN Laboratory, Sorbonne Université-CNRS-IRD-MNHN, Paris, France

Search for other papers by Casimir de Lavergne in
Current site
Google Scholar
PubMed
Close
, and
Gurvan Madec LOCEAN Laboratory, Sorbonne Université-CNRS-IRD-MNHN, Paris, France

Search for other papers by Gurvan Madec in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Horizontal fluxes of heat and other scalar quantities in the ocean are due to correlations between the horizontal velocity and tracer fields. However, the limited spatial resolution of ocean models means that these correlations are not fully resolved using the velocity and temperature evaluated on the model grid, due to the limited spatial resolution and the boxcar-averaged nature of the velocity and the scalar field. In this article, a method of estimating the horizontal flux due to unresolved spatial correlations is proposed, based on the depth-integrated horizontal transport from the seafloor to the density surface whose spatially averaged height is the height of the calculation. This depth-integrated horizontal transport takes into account the subgrid velocity and density variations to compensate the standard estimate of horizontal transport based on staircase-like velocity and density. It is not a parameterization of unresolved eddies, since it utilizes data available in ocean models without relying on any presumed parameter such as diffusivity. The method is termed the horizontal residual mean (HRM). The method is capable of estimating the spatial-correlation-induced water transport in a 1/4° global ocean model, using model data smoothed to 3/4°. The HRM extra overturning has a peak in the Southern Ocean of about 1.5 Sv (1 Sv ≡ 106 m3 s−1). This indicates an extra heat transport of 0.015 PW on average in the same area. It is expected that implementing the scheme in a coarse-resolution ocean model will improve its representation of lateral heat fluxes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuehua Li, yuehua.li@unsw.edu.au

Abstract

Horizontal fluxes of heat and other scalar quantities in the ocean are due to correlations between the horizontal velocity and tracer fields. However, the limited spatial resolution of ocean models means that these correlations are not fully resolved using the velocity and temperature evaluated on the model grid, due to the limited spatial resolution and the boxcar-averaged nature of the velocity and the scalar field. In this article, a method of estimating the horizontal flux due to unresolved spatial correlations is proposed, based on the depth-integrated horizontal transport from the seafloor to the density surface whose spatially averaged height is the height of the calculation. This depth-integrated horizontal transport takes into account the subgrid velocity and density variations to compensate the standard estimate of horizontal transport based on staircase-like velocity and density. It is not a parameterization of unresolved eddies, since it utilizes data available in ocean models without relying on any presumed parameter such as diffusivity. The method is termed the horizontal residual mean (HRM). The method is capable of estimating the spatial-correlation-induced water transport in a 1/4° global ocean model, using model data smoothed to 3/4°. The HRM extra overturning has a peak in the Southern Ocean of about 1.5 Sv (1 Sv ≡ 106 m3 s−1). This indicates an extra heat transport of 0.015 PW on average in the same area. It is expected that implementing the scheme in a coarse-resolution ocean model will improve its representation of lateral heat fluxes.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuehua Li, yuehua.li@unsw.edu.au
Save
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., S. M. Griffies, A. J. Nurser, and G. K. Vallis, 2010: A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Modell., 32, 143156, https://doi.org/10.1016/j.ocemod.2010.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2004: Fundamentals of Ocean Climate Models. Princeton Press, 528 pp.

    • Crossref
    • Export Citation
  • Griffies, S. M., 2012: Elements of the Modular Ocean Model (MOM): 2012 release. GFDL Ocean Group Tech. Rep. 7, 632 pp., https://mom-ocean.github.io/assets/pdfs/MOM5_manual.pdf.

  • Maddison, J. R., and D. P. Marshall, 2013: The Eliassen–Palm flux tensor. J. Fluid Mech., 729, 69102, https://doi.org/10.1017/jfm.2013.259.

  • McDougall, T. J., 1998: Three-dimensional residual-mean theory. Ocean Modeling and Parameterization, E. P. Chassignet and J. Verron, Eds., Springer, 269–302, https://doi.org/10.1007/978-94-011-5096-5_12.

    • Crossref
    • Export Citation
  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31, 12221246, https://doi.org/10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and D. R. Jackett, 2005: The material derivative of neutral density. J. Mar. Res., 63, 159185, https://doi.org/10.1357/0022240053693734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 28 pp., http://www.teos-10.org/pubs/Getting_Started.pdf.

  • McDougall, T. J., S. Groeskamp, and S. M. Griffies, 2014: On geometrical aspects of interior ocean mixing. J. Phys. Oceanogr., 44, 21642175, https://doi.org/10.1175/JPO-D-13-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T., S. Groeskamp, and S. Griffies, 2017: Comment on Tailleux, R. Neutrality versus materiality: A thermodynamic theory of neutral surfaces. Fluids 2016, 1, 32. Fluids, 2, 19, https://doi.org/10.3390/fluids2020019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porta Mana, P., and L. Zanna, 2014: Toward a stochastic parameterization of ocean mesoscale eddies. Ocean Modell., 79, 120, https://doi.org/10.1016/j.ocemod.2014.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., and C. Wunsch, 1991: Mass, heat, oxygen and nutrient fluxes and budgets in the North Atlantic Ocean. Deep-Sea Res., 38, S355S377, https://doi.org/10.1016/S0198-0149(12)80017-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, https://doi.org/10.1175/JPO-D-11-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 277 92 7
PDF Downloads 248 83 6