Generation Mechanism of Tropical Instability Waves in the Equatorial Pacific Ocean

Yuki Tanaka Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan

Search for other papers by Yuki Tanaka in
Current site
Google Scholar
PubMed
Close
and
Toshiyuki Hibiya Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan

Search for other papers by Toshiyuki Hibiya in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical instability waves (TIWs) are prominent features in the equatorial Pacific, propagating westward at a speed of ~0.5 m s−1 with a wavelength of ~1000 km. In this study, we show that a linear stability analysis using a 1.5-layer shallow water model can predict successfully an unstable mode whose wavelength, phase speed, growth rate, and meridional structure are all consistent with those of the TIWs simulated by an eddy-resolving ocean general circulation model (OGCM). This unstable mode can be interpreted as resulting from the coupling of two Rossby waves, namely, one trapped just north of the equator (~1°–3.5°N) and the other trapped farther north (~3.5°–8°N). Although these two Rossby waves have opposite intrinsic phase propagation directions reflecting the negative and positive local meridional potential vorticity (PV) gradients, respectively, their actual propagation direction can be adjusted through the advection by the South Equatorial Current and the North Equatorial Countercurrent such that they might propagate westward at the same speed and with the same zonal wavenumber yielding the largest growth rate of TIWs. The unstable mode does not appear during the period in which the negative PV gradient is absent, which demonstrates its essential role in generating TIWs. Indeed, the seasonal and interannual variability of the TIWs simulated by the OGCM is shown to be significantly controlled by the strength of the negative PV gradient just north of the equator, suggesting that it could be a key parameter toward a dynamically based parameterization of the heat and momentum transfer associated with TIWs in coarse-resolution OGCMs.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuki Tanaka, yuki.tanaka@eps.s.u-tokyo.ac.jp

Abstract

Tropical instability waves (TIWs) are prominent features in the equatorial Pacific, propagating westward at a speed of ~0.5 m s−1 with a wavelength of ~1000 km. In this study, we show that a linear stability analysis using a 1.5-layer shallow water model can predict successfully an unstable mode whose wavelength, phase speed, growth rate, and meridional structure are all consistent with those of the TIWs simulated by an eddy-resolving ocean general circulation model (OGCM). This unstable mode can be interpreted as resulting from the coupling of two Rossby waves, namely, one trapped just north of the equator (~1°–3.5°N) and the other trapped farther north (~3.5°–8°N). Although these two Rossby waves have opposite intrinsic phase propagation directions reflecting the negative and positive local meridional potential vorticity (PV) gradients, respectively, their actual propagation direction can be adjusted through the advection by the South Equatorial Current and the North Equatorial Countercurrent such that they might propagate westward at the same speed and with the same zonal wavenumber yielding the largest growth rate of TIWs. The unstable mode does not appear during the period in which the negative PV gradient is absent, which demonstrates its essential role in generating TIWs. Indeed, the seasonal and interannual variability of the TIWs simulated by the OGCM is shown to be significantly controlled by the strength of the negative PV gradient just north of the equator, suggesting that it could be a key parameter toward a dynamically based parameterization of the heat and momentum transfer associated with TIWs in coarse-resolution OGCMs.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuki Tanaka, yuki.tanaka@eps.s.u-tokyo.ac.jp
Save
  • An, S., 2008: Interannual variations of the tropical ocean instability wave and ENSO. J. Climate, 21, 36803686, https://doi.org/10.1175/2008JCLI1701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, E., and Coauthors, 1999: LAPACK Users’ Guide. 3rd ed. Society for Industrial and Applied Mathematics, 407 pp.

  • Baines, P. G., and H. Mitsudera, 1994: On the mechanism of shear flow instabilities. J. Fluid Mech., 276, 327342, https://doi.org/10.1017/S0022112094002582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Case, K. M., 1960: Stability of inviscid plane Couette flow. Phys. Fluids, 3, 143148, https://doi.org/10.1063/1.1706010.

  • Chelton, D. B., F. J. Wentz, C. L. Gentemann, R. A. de Szoeke, and M. G. Schlax, 2000: Satellite microwave SST observations of transequatorial tropical instability waves. Geophys. Res. Lett., 27, 12391242, https://doi.org/10.1029/1999GL011047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, Y., N. Paldor, and J. Sommeria, 2010: Laboratory experiments and a non-harmonic theory for topographic Rossby waves over a linearly sloping bottom on the f-plane. J. Fluid Mech., 645, 479496, https://doi.org/10.1017/S0022112009992862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, M. D., 1980: Generation and propagation of 30-day waves in a numerical model of the Pacific. J. Phys. Oceanogr., 10, 11681186, https://doi.org/10.1175/1520-0485(1980)010<1168:GAPODW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De-Leon, Y., C. Erlick, and N. Paldor, 2010: The eigenvalue equations of equatorial waves on a sphere. Tellus, 62A, 6270, https://doi.org/10.1111/j.1600-0870.2009.00420.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dutrieux, P., C. Menkes, J. Vialard, P. Flament, and B. Blanke, 2008: Lagrangian study of tropical instability vortices in the Atlantic. J. Phys. Oceanogr., 38, 400417, https://doi.org/10.1175/2007JPO3763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrar, J. T., 2008: Observations of the dispersion characteristics and meridional sea level structure of equatorial waves in the Pacific Ocean. J. Phys. Oceanogr., 38, 16691689, https://doi.org/10.1175/2007JPO3890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrar, J. T., 2011: Barotropic Rossby waves radiating from tropical instability waves in the Pacific Ocean. J. Phys. Oceanogr., 41, 11601181, https://doi.org/10.1175/2011JPO4547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flament, P., S. Kennan, R. Knox, P. Niiler, and R. Bernstein, 1996: The three-dimensional structure of an upper ocean vortex in the tropical Pacific Ocean. Nature, 383, 610613, https://doi.org/10.1038/383610a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halpern, D., R. A. Knox, and D. S. Luther, 1988: Observations of 20-day meridional current oscillations in the upper ocean along the Pacific equator. J. Phys. Oceanogr., 18, 15141534, https://doi.org/10.1175/1520-0485(1988)018<1514:OODPMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, D. V., and C. A. Paul, 1984: Genesis and effects of long waves in the equatorial Pacific. J. Geophys. Res., 89, 10 43110 440, https://doi.org/10.1029/JC089iC06p10431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y.-Y., and W. R. Young, 1987: Stable and unstable shear modes on rotating parallel flows in shallow water. J. Fluid Mech., 184, 477504, https://doi.org/10.1017/S0022112087002982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heifetz, E., C. H. Bishop, B. J. Hoskins, and J. Methven, 2004: The counter-propagating Rossby-wave perspective on baroclinic instability. I: Mathematical basis. Quart. J. Roy. Meteor. Soc., 130, 211231, https://doi.org/10.1002/qj.200413059610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., and L. N. Thomas, 2015: The modulation of equatorial turbulence by tropical instability waves in a regional ocean model. J. Phys. Oceanogr., 45, 11551173, https://doi.org/10.1175/JPO-D-14-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., and L. N. Thomas, 2016: Modulation of tropical instability wave intensity by equatorial Kelvin waves. J. Phys. Oceanogr., 46, 26232643, https://doi.org/10.1175/JPO-D-16-0064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, R. M., J. N. Moum, and L. N. Thomas, 2016: Evidence for seafloor-intensified mixing by surface-generated equatorial waves. Geophys. Res. Lett., 43, 12021210, https://doi.org/10.1002/2015GL066472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iga, K., 1995: Transition modes of rotating shallow water waves in a channel. J. Fluid Mech., 294, 367390, https://doi.org/10.1017/S002211209500293X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iga, K., 1999a: A simple criterion for the sign of the pseudomomentum of modes in shallow water systems. J. Fluid Mech., 387, 343352, https://doi.org/10.1017/S0022112099004577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iga, K., 1999b: Critical layer instability as a resonance between a non-singular mode and continuous modes. Fluid Dyn. Res., 25, 6386, https://doi.org/10.1016/S0169-5983(98)00031-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iga, K., 2013: Shear instability as a resonance between neutral waves hidden in a shear flow. J. Fluid Mech., 715, 452476, https://doi.org/10.1017/jfm.2012.529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imada, Y., and M. Kimoto, 2012: Parameterization of tropical instability waves and examination of their impact on ENSO characteristics. J. Climate, 25, 45684581, https://doi.org/10.1175/JCLI-D-11-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imada, Y., M. Kimoto, and X. Chen, 2012: Impact of the atmospheric mean state on tropical instability wave activity. J. Climate, 25, 23412355, https://doi.org/10.1175/2011JCLI4244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, R., R. Lien, and J. Moum, 2012: Modulation of equatorial turbulence by a tropical instability wave. J. Geophys. Res., 117, C10009, https://doi.org/10.1029/2011JC007767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., L. Wu, D. Wu, and B. Qiu, 2014: Enhanced 2-h–8-day oscillations associated with tropical instability waves. J. Phys. Oceanogr., 44, 19081918, https://doi.org/10.1175/JPO-D-13-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., and R. Murtugudde, 2006: Temperature advection by tropical instability waves. J. Phys. Oceanogr., 36, 592605, https://doi.org/10.1175/JPO2870.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., P. Malanotte-Rizzoli, and A. Busalacchi, 2004: Tropical instability waves in the Atlantic Ocean. Ocean Modell., 7, 145163, https://doi.org/10.1016/S1463-5003(03)00042-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennan, S. C., and P. J. Flament, 2000: Observations of a tropical instability vortex. J. Phys. Oceanogr., 30, 22772301, https://doi.org/10.1175/1520-0485(2000)030<2277:OOATIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubokawa, A., 1986: Instability caused by the coalescence of two modes of a one-layer frontal model. J. Oceanogr. Soc. Japan, 42, 373380, https://doi.org/10.1007/BF02110432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legeckis, R., 1977: Long waves in the eastern equatorial Pacific Ocean: A view from a geostationary satellite. Science, 197, 11791181, https://doi.org/10.1126/science.197.4309.1179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., E. A. D’Asaro, and C. E. Menkes, 2008: Modulation of equatorial turbulence by tropical instability waves. Geophys. Res. Lett., 35, L24607, https://doi.org/10.1029/2008GL035860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., A. Köhl, Z. Liu, F. Wang, and D. Stammer, 2016: Deep-reaching thermocline mixing in the equatorial pacific cold tongue. Nat. Commun., 7, 11 576, https://doi.org/10.1038/ncomms11576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luther, D. S., and E. S. Johnson, 1990: Eddy energetics in the upper equatorial Pacific during the Hawaii-to-Tahiti shuttle experiment. J. Phys. Oceanogr., 20, 913944, https://doi.org/10.1175/1520-0485(1990)020<0913:EEITUE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., D. B. Chelton, R. A. deSzoeke, and R. M. Samelson, 2005: Tropical instability waves as a resonance between equatorial Rossby waves. J. Phys. Oceanogr., 35, 232254, https://doi.org/10.1175/JPO-2668.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyman, J. M., G. C. Johnson, and W. S. Kessler, 2007: Distinct 17- and 33-day tropical instability waves in subsurface observations. J. Phys. Oceanogr., 37, 855872, https://doi.org/10.1175/JPO3023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masina, S., S. G. H. Philander, and A. B. G. Bush, 1999: An analysis of tropical instability waves in a numerical model of the Pacific Ocean. Part II: Generation and energetics of the waves. J. Geophys. Res., 104, 29 63729 661, https://doi.org/10.1029/1999JC900226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., 2010: Sharing the results of a high-resolution ocean general circulation model under a multi-discipline framework: A review of OFES activities. Ocean Dyn., 60, 633652, https://doi.org/10.1007/s10236-010-0297-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and Coauthors, 2004: A fifty-year eddy-resolving simulation of the world ocean—Preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simul., 1, 3556.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and Z. Yu, 1992: Equatorial dynamics in a 2 1/2-layer model. Prog. Oceanogr., 29, 61132, https://doi.org/10.1016/0079-6611(92)90003-I.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1996: Monthly period oscillations in the Pacific North Equatorial Countercurrent. J. Geophys. Res., 101, 63376359, https://doi.org/10.1029/95JC03620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menkes, C. E. R., J. G. Vialard, S. C. Kennan, J.-P. Boulanger, and G. V. Madec, 2006: A modeling study of the impact of tropical instability waves on the heat budget of the eastern equatorial Pacific. J. Phys. Oceanogr., 36, 847865, https://doi.org/10.1175/JPO2904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., R.-C. Lien, A. Perlin, J. Nash, M. Gregg, and P. Wiles, 2009: Sea surface cooling at the equator by subsurface mixing in tropical instability waves. Nat. Geosci., 2, 761765, https://doi.org/10.1038/ngeo657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Philander, S. G. H., 1976: Instabilities of zonal equatorial currents. J. Geophys. Res., 81, 37253735, https://doi.org/10.1029/JC081i021p03725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1978: Instabilities of zonal equatorial currents, 2. J. Geophys. Res., 83, 36793682, https://doi.org/10.1029/JC083iC07p03679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., W. J. Hurlin, and R. C. Pacanowski, 1986: Properties of long equatorial waves in models of the seasonal cycle in the tropical Atlantic and Pacific Oceans. J. Geophys. Res., 91, 14 20714 211, https://doi.org/10.1029/JC091iC12p14207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proehl, J. A., 1996: Linear stability of equatorial zonal flows. J. Phys. Oceanogr., 26, 601621, https://doi.org/10.1175/1520-0485(1996)026<0601:LSOEZF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, L., and R. H. Weisberg, 1995: Tropical instability wave kinematics: Observation from the Tropical Instability Wave Experiment. J. Geophys. Res., 100, 86778693, https://doi.org/10.1029/95JC00305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, L., and R. H. Weisberg, 1998: Tropical instability wave energetics: Observations from the Tropical Instability Wave Experiment. J. Phys. Oceanogr., 28, 345360, https://doi.org/10.1175/1520-0485(1998)028<0345:TIWEOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1982: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347367, https://doi.org/10.1017/S0022112082002250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., M. Nonaka, Y. Masumoto, Y. Sasai, H. Uehara, and H. Sakuma, 2008: An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth Simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean, K. Hamilton and W. Ohfuchi, Eds., Springer, 157–185.

    • Crossref
    • Export Citation
  • Seigel, A. D., 1985: A comment on long waves in the Pacific Ocean. J. Phys. Oceanogr., 15, 18811883, https://doi.org/10.1175/1520-0485(1985)015<1881:ACOLWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., M. Jochum, R. Murtugudde, A. Miller, and J. Roads, 2007: Feedback of tropical instability-wave-induced atmospheric variability onto the ocean. J. Climate, 20, 58425855, https://doi.org/10.1175/JCLI4330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staniforth, A. N., R. T. Williams, and B. Neta, 1993: Influence of linear depth variation on Poincare, Kelvin, and Rossby waves. J. Atmos. Sci., 50, 929940, https://doi.org/10.1175/1520-0469(1993)050<0929:IOLDVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, Y., T. Hibiya, and H. Sasaki, 2015: Downward lee wave radiation from tropical instability waves in the central equatorial Pacific Ocean: A possible energy pathway to turbulent mixing. J. Geophys. Res. Oceans, 120, 71377149, https://doi.org/10.1002/2015JC011017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taniguchi, H., and M. Ishiwatari, 2006: Physical interpretation of unstable modes of a linear shear flow in shallow water on an equatorial beta-plane. J. Fluid Mech., 567, 126, https://doi.org/10.1017/S0022112006002400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge University Press, 964 pp.

  • Warner, S. J., R. M. Holmes, E. H. M. Hawkins, M. S. Hoecker-Martinez, A. C. Savage, and J. N. Moum, 2018: Buoyant gravity currents released from tropical instability waves. J. Phys. Oceanogr., 48, 361382, https://doi.org/10.1175/JPO-D-17-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Z., J. P. McCreary, and J. A. Proehl, 1995: Meridional asymmetry and energetics of tropical instability waves. J. Phys. Oceanogr., 25, 29973007, https://doi.org/10.1175/1520-0485(1995)025<2997:MAAEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 859 242 16
PDF Downloads 870 225 13