A Barotropic Vorticity Budget for the Subtropical North Atlantic Based on Observations

Isabela Alexander-Astiz Le Bras CASPO Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, and MIT–WHOI Joint Program in Physical Oceanography, Cambridge, Massachusetts

Search for other papers by Isabela Alexander-Astiz Le Bras in
Current site
Google Scholar
PubMed
Close
,
Maike Sonnewald Department of Earth and Planetary Sciences, Harvard University, and Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Maike Sonnewald in
Current site
Google Scholar
PubMed
Close
, and
John M. Toole Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by John M. Toole in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To ground truth the large-scale dynamical balance of the North Atlantic subtropical gyre with observations, a barotropic vorticity budget is constructed in the ECCO state estimate and compared with hydrographic observations and wind stress data products. The hydrographic dataset at the center of this work is the A22 WOCE section, which lies along 66°W and creates a closed volume with the North and South American coasts to its west. The planetary vorticity flux across A22 is quantified, providing a metric for the net meridional flow in the western subtropical gyre. The wind stress forcing over the subtropical gyre to the west and east of the A22 section is calculated from several wind stress data products. These observational budget terms are found to be consistent with an approximate barotropic Sverdrup balance in the eastern subtropical gyre and are on the same order as budget terms in the ECCO state estimate. The ECCO vorticity budget is closed by bottom pressure torques in the western subtropical gyre, which is consistent with previous studies. In sum, the analysis provides observational ground truth for the North Atlantic subtropical vorticity balance and explores the seasonal variability of this balance for the first time using the ECCO state estimate. This balance is found to hold on monthly time scales in ECCO, suggesting that the integrated subtropical gyre responds to forcing through fast barotropic adjustment.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Isabela Alexander-Astiz Le Bras, ilebras@ucsd.edu

Abstract

To ground truth the large-scale dynamical balance of the North Atlantic subtropical gyre with observations, a barotropic vorticity budget is constructed in the ECCO state estimate and compared with hydrographic observations and wind stress data products. The hydrographic dataset at the center of this work is the A22 WOCE section, which lies along 66°W and creates a closed volume with the North and South American coasts to its west. The planetary vorticity flux across A22 is quantified, providing a metric for the net meridional flow in the western subtropical gyre. The wind stress forcing over the subtropical gyre to the west and east of the A22 section is calculated from several wind stress data products. These observational budget terms are found to be consistent with an approximate barotropic Sverdrup balance in the eastern subtropical gyre and are on the same order as budget terms in the ECCO state estimate. The ECCO vorticity budget is closed by bottom pressure torques in the western subtropical gyre, which is consistent with previous studies. In sum, the analysis provides observational ground truth for the North Atlantic subtropical vorticity balance and explores the seasonal variability of this balance for the first time using the ECCO state estimate. This balance is found to hold on monthly time scales in ECCO, suggesting that the integrated subtropical gyre responds to forcing through fast barotropic adjustment.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Isabela Alexander-Astiz Le Bras, ilebras@ucsd.edu
Save
  • Adcroft, A., C. Hill, and P. Heimbach, 2004: Overview of the formulation and numerics of the MIT GCM. Seminar on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, Reading, United Kingdom, ECMWF, 139150, https://www.ecmwf.int/node/7642.

    • Search Google Scholar
    • Export Citation
  • Anderson, D. L. T., and P. D. Killworth, 1977: Spin-up of a stratified ocean, with topography. Deep-Sea Res., 24, 709732, https://doi.org/10.1016/0146-6291(77)90495-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, D. L. T., and R. Corry, 1985: Ocean response to low frequency wind forcing with application to the seasonal variation in the Florida Straits–Gulf Stream transport. Prog. Oceanogr., 14, 740, https://doi.org/10.1016/0079-6611(85)90003-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baringer, M. O., and J. C. Larsen, 2001: Sixteen years of Florida current transport at 27N. Geophys. Res. Lett., 28, 31793182, https://doi.org/10.1029/2001GL013246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beal, L. M., J. M. Hummon, E. Williams, O. B. Brown, W. Baringer, and E. J. Kearns, 2008: Five years of Florida Current structure and transport from the Royal Caribbean Cruise Ship Explorer of the Seas. J. Geophys. Res., 113, C06001, https://doi.org/10.1029/2007JC004154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Casanova-Masjoan, M., T. Joyce, M. Pérez-Hernández, P. Vélez-Belchí, and A. Hernández-Guerra, 2018: Changes across 66°W, the Caribbean Sea and the Western boundaries of the North Atlantic Subtropical Gyre. Prog. Oceanogr., 168, 296309, https://doi.org/10.1016/j.pocean.2018.09.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cessi, P., 1990: Recirculation and separation of boundary currents. J. Mar. Res., 48, 135, https://doi.org/10.1357/002224090784984597.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., 1998: Topography and barotropic transport control by bottom friction. J. Mar. Res., 56, 295328, https://doi.org/10.1357/002224098321822320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, R., M. Baringer, and G. Goni, 2016: Remote sources for year-to-year changes in the seasonality of the Florida Current transport. J. Geophys. Res. Oceans, 121, 75477559, https://doi.org/10.1002/2016JC012070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchez, A., and Coauthors, 2016: Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Environ. Res. Lett., 11, 074004, https://doi.org/10.1088/1748-9326/11/7/074004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECCO Consortium, 2017a: A twenty-year dynamical oceanic climatology: 1994–2013. Part 1: Active scalar fields: Temperature, salinity, dynamic topography, mixed-layer depth, bottom pressure. ECCO Rep., 54 pp., http://hdl.handle.net/1721.1/107613.

  • ECCO Consortium, 2017b: A twenty-year dynamical oceanic climatology: 1994–2013. Part 2: Velocities, property transports, meteorological variables, mixing coefficients. ECCO Rep., 45 pp., http://hdl.handle.net/1721.1/109847.

  • ECMWF, 2012: ERA-Interim Project, Monthly Means. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, accessed 16 February 2014, https://doi.org/10.5065/D68050NT.

    • Crossref
    • Export Citation
  • Efron, B., and G. Gong, 1983: A leisurely look at the bootstrap, the jackknife, and cross-validation. Amer. Stat., 37, 3648, https://doi.org/10.1080/00031305.1983.10483087.

    • Search Google Scholar
    • Export Citation
  • Evans, D. G., J. Toole, G. Forget, J. D. Zika, A. C. Naveira Garabato, A. J. G. Nurser, and L. Yu, 2017: Recent wind-driven variability in Atlantic water mass distribution and meridional overturning circulation. J. Phys. Oceanogr., 47, 633647, https://doi.org/10.1175/JPO-D-16-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, A. R., and S. C. Riser, 2014: A global analysis of Sverdrup balance using absolute geostrophic velocities from Argo. J. Phys. Oceanogr., 44, 12131229, https://doi.org/10.1175/JPO-D-12-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hautala, S. L., D. H. Roemmich, and W. J. Schmitz, 1994: Is the North Pacific in Sverdrup balance along 24°N? J. Geophys. Res., 99, 16 04116 052, https://doi.org/10.1029/94JC01084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. N. G., R. S. R. Pickart, R. M. R. Hendry, and W. J. Smethie, 1986: The northern recirculation gyre of the Gulf Stream. Deep-Sea Res., 33, 11391165, https://doi.org/10.1016/0198-0149(86)90017-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, W. R., 1972: Baroclinic and topographic influences on the transport in western boundary currents. Geophys. Fluid Dyn., 4, 187210, https://doi.org/10.1080/03091927208236095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., 1995: A warning about topography in the Cox code. Ocean Modell., 106, 815.

  • Hughes, C. W., 2000: A theoretical reason to expect inviscid western boundary currents in realistic oceans. Ocean Modell., 2, 7383, https://doi.org/10.1016/S1463-5003(00)00011-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, C. W., and B. A. de Cuevas, 2001: Why western boundary currents in realistic oceans are inviscid: A link between form stress and bottom pressure torques. J. Phys. Oceanogr., 31, 28712885, https://doi.org/10.1175/1520-0485(2001)031<2871:WWBCIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, L., C. W. Hughes, and R. G. Williams, 2006: The role of bottom pressure torques and friction in basin and channel flows. J. Phys. Oceanogr., 36, 17861805, https://doi.org/10.1175/JPO2936.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., S. Singh, and R. X. Huang, 1999: Seasonal variations of sea surface height in the Gulf Stream region. J. Phys. Oceanogr., 29, 313327, https://doi.org/10.1175/1520-0485(1999)029<0313:SVOSSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, Y. O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 32493281, https://doi.org/10.1175/2010JCLI3343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Bras, I. A., 2017: Dynamics of North Atlantic Western Boundary Currents. Ph.D. thesis, Massachusetts Institute of Technology–Woods Hole Oceanographic Institution Joint Program, 174 pp., https://doi.org/10.1575/1912/8657.

    • Crossref
    • Export Citation
  • Le Bras, I. A., S. R. Jayne, and J. M. Toole, 2018: The interaction of recirculation gyres and a deep boundary current. J. Phys. Oceanogr., 48, 573590, https://doi.org/10.1175/JPO-D-17-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leetmaa, A., P. Niiler, and H. Stommel, 1977: Does the Sverdrup relation account for the mid-Atlantic circulation. J. Mar. Res., 35, 110.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., and D. Stammer, 2004: Vorticity balance in coarse-resolution global ocean simulations. J. Phys. Oceanogr., 34, 605622, https://doi.org/10.1175/2504.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mertz, G., and D. G. Wright, 1992: Interpretations of the JEBAR term. J. Phys. Oceanogr., 22, 301305, https://doi.org/10.1175/1520-0485(1992)022<0301:IOTJT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1950: On the wind driven ocean circulation. J. Meteor., 5, 3643, https://doi.org/10.1016/S0146-6291(58)80006-5.

  • Munk, W. H., and E. Palmén, 1951: Note on the dynamics of the Antarctic Circumpolar Current. Tellus, 3, 5355, https://doi.org/10.3402/tellusa.v3i1.8609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palter, J. B., M. S. Lozier, and R. T. Barber, 2005: The effect of advection on the nutrient reservoir in the North Atlantic subtropical gyre. Nature, 437, 687692, https://doi.org/10.1038/nature03969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez-Hernández, M. D., G. D. McCarthy, P. Vélez-Belchí, D. A. Smeed, E. Fraile-Nuez, and A. Hernández-Guerra, 2015: The Canary Basin contribution to the seasonal cycle of the Atlantic Meridional Overturning Circulation at 26°N. J. Geophys. Res. Oceans, 120, 72377252, https://doi.org/10.1002/2015JC010969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and W. R. Young, 1982: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347367, https://doi.org/10.1017/S0022112082002250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Risien, C. M., and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, https://doi.org/10.1175/2008JPO3881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., and I. Orlanski, 2007: Characteristics of the Atlantic storm-track eddy activity and its relation with the North Atlantic Oscillation. J. Atmos. Sci., 64, 241266, https://doi.org/10.1175/JAS3850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, T., C. Flagg, and K. Donohue, 2010: On the variability of Gulf Stream transport from seasonal to decadal timescales. J. Mar. Res., 68, 503522, https://doi.org/10.1357/002224010794657128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, O. T., and T. Rossby, 1995: Seasonal and low frequency variations in dynamic height anomaly and transport of the Gulf Stream. Deep-Sea Res. I, 42, 149164, https://doi.org/10.1016/0967-0637(94)00034-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., J. D. Thompson, and J. R. Luyten, 1992: The Sverdrup circulation for the Atlantic along 24°N. J. Geophys. Res., 97, 72517256, https://doi.org/10.1029/92JC00417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoonover, J., and Coauthors, 2015: North Atlantic barotropic vorticity balances in numerical models. J. Phys. Oceanogr., 1, 289303, https://doi.org/10.1175/JPO-D-15-0133.1.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., and R. Zantopp, 1985: Florida current: seasonal and interannual variability. Science, 227, 308311, https://doi.org/10.1126/science.227.4684.308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., T. N. Lee, R. Zantopp, F. A. Schott, T. N. Lee, and R. Zantopp, 1988: Variability of structure and transport of the Florida Current in the period range of days to seasonal. J. Phys. Oceanogr., 18, 12091230, https://doi.org/10.1175/1520-0485(1988)018<1209:VOSATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sonnewald, M., C. Wunsch, and P. Heimbach, 2019: Unsupervised learning reveals geography of global ocean dynamical regions. Earth Space Sci., 6, 784794, https://doi.org/10.1029/2018EA000519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., M. Balmaseda, P. Heimbach, A. Köhl, and A. Weaver, 2016: Ocean data assimilation in support of climate applications: Status and perspectives. Annu. Rev. Mar. Sci., 8, 491518, https://doi.org/10.1146/annurev-marine-122414-034113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1948: The westward intensification of wind-driven ocean currents. Eos, Trans. Amer. Geophys. Union, 29, 202206, https://doi.org/10.1029/TR029i002p00202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and B. Dong, 2012: Atlantic Ocean influence on a shift in European climate in the 1990s. Nat. Geosci., 5, 788792, https://doi.org/10.1038/ngeo1595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., 1947: Wind-driven currents in a baroclinic ocean; With application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33, 318326, https://doi.org/10.1073/pnas.33.11.318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, M. D., A. M. De Boer, H. L. Johnson, and D. P. Stevens, 2014: Spatial and temporal scales of Sverdrup balance. J. Phys. Oceanogr., 44, 26442660, https://doi.org/10.1175/JPO-D-13-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurnherr, A. M., 2010: A practical assessment of the errors associated with full-depth LADCP profiles obtained using Teledyne RDI workhorse acoustic Doppler current profilers. J. Atmos. Oceanic Technol., 27, 12151227, https://doi.org/10.1175/2010JTECHO708.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., and S. R. Jayne, 2012: Eddy-driven recirculations from a localized transient forcing. J. Phys. Oceanogr., 42, 430447, https://doi.org/10.1175/JPO-D-11-060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2011: The decadal mean ocean circulation and Sverdrup balance. J. Mar. Res., 69, 417434, https://doi.org/10.1357/002224011798765303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and D. Roemmich, 1985: Is the North Atlantic in Sverdrup balance? J. Phys. Oceanogr., 15, 18761880, https://doi.org/10.1175/1520-0485(1985)015<1876:ITNAIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2007: Practical global oceanic state estimation. Physica D, 230, 197208, https://doi.org/10.1016/j.physd.2006.09.040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2013a: Dynamically and kinematically consistent global ocean circulation and ice state estimates. Ocean Circulation and Climate: A 21st Century Perspective, G. Siedler et al., Eds., International Geophysics Series, Vol. 103, Academic Press, 553–580.

    • Crossref
    • Export Citation
  • Wunsch, C., and P. Heimbach, 2013b: Two decades of the Atlantic meridional overturning circulation: Anatomy, variations, extremes, prediction, and overcoming its limitations. J. Climate, 26, 71677186, https://doi.org/10.1175/JCLI-D-12-00478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1974: Equatorial currents in the Pacific 1950 to 1970 and their relations to the trade winds. J. Phys. Oceanogr., 4, 372380, https://doi.org/10.1175/1520-0485(1974)004<0372:ECITPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeager, S., 2015: Topographic coupling of the Atlantic overturning and gyre circulations. J. Phys. Oceanogr., 45, 12581284, https://doi.org/10.1175/JPO-D-14-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, J., and W. Johns, 2014: Wind-driven seasonal cycle of the Atlantic meridional overturning circulation. J. Phys. Oceanogr., 44, 15411562, https://doi.org/10.1175/JPO-D-13-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1412 481 46
PDF Downloads 465 144 14