Wave–Current Interaction between Hurricane Matthew Wave Fields and the Gulf Stream

Christie A. Hegermiller Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Christie A. Hegermiller in
Current site
Google Scholar
PubMed
Close
,
John C. Warner Woods Hole Coastal and Marine Science Center, U.S. Geological Survey, Woods Hole, Massachusetts

Search for other papers by John C. Warner in
Current site
Google Scholar
PubMed
Close
,
Maitane Olabarrieta University of Florida, Gainesville, Florida

Search for other papers by Maitane Olabarrieta in
Current site
Google Scholar
PubMed
Close
, and
Christopher R. Sherwood Woods Hole Coastal and Marine Science Center, U.S. Geological Survey, Woods Hole, Massachusetts

Search for other papers by Christopher R. Sherwood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Hurricanes interact with the Gulf Stream in the South Atlantic Bight (SAB) through a wide variety of processes, which are crucial to understand for prediction of open-ocean and coastal hazards during storms. However, it remains unclear how waves are modified by large-scale ocean currents under storm conditions, when waves are aligned with the storm-driven circulation and tightly coupled to the overlying wind field. Hurricane Matthew (2016) impacted the U.S. Southeast coast, causing extensive coastal change due to large waves and elevated water levels. The hurricane traveled on the continental shelf parallel to the SAB coastline, with the right side of the hurricane directly over the Gulf Stream. Using the Coupled Ocean–Atmosphere–Wave–Sediment Transport modeling system, we investigate wave–current interaction between Hurricane Matthew and the Gulf Stream. The model simulates ocean currents and waves over a grid encompassing the U.S. East Coast, with varied coupling of the hydrodynamic and wave components to isolate the effect of the currents on the waves, and the effect of the Gulf Stream relative to storm-driven circulation. The Gulf Stream modifies the direction of the storm-driven currents beneath the right side of the hurricane. Waves transitioned from following currents that result in wave lengthening, through negative current gradients that result in wave steepening and dissipation. Wave–current interaction over the Gulf Stream modified maximum coastal total water levels and changed incident wave directions at the coast by up to 20°, with strong implications for the morphodynamic response and stability of the coast to the hurricane.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christie A. Hegermiller, chegermiller@whoi.edu

Abstract

Hurricanes interact with the Gulf Stream in the South Atlantic Bight (SAB) through a wide variety of processes, which are crucial to understand for prediction of open-ocean and coastal hazards during storms. However, it remains unclear how waves are modified by large-scale ocean currents under storm conditions, when waves are aligned with the storm-driven circulation and tightly coupled to the overlying wind field. Hurricane Matthew (2016) impacted the U.S. Southeast coast, causing extensive coastal change due to large waves and elevated water levels. The hurricane traveled on the continental shelf parallel to the SAB coastline, with the right side of the hurricane directly over the Gulf Stream. Using the Coupled Ocean–Atmosphere–Wave–Sediment Transport modeling system, we investigate wave–current interaction between Hurricane Matthew and the Gulf Stream. The model simulates ocean currents and waves over a grid encompassing the U.S. East Coast, with varied coupling of the hydrodynamic and wave components to isolate the effect of the currents on the waves, and the effect of the Gulf Stream relative to storm-driven circulation. The Gulf Stream modifies the direction of the storm-driven currents beneath the right side of the hurricane. Waves transitioned from following currents that result in wave lengthening, through negative current gradients that result in wave steepening and dissipation. Wave–current interaction over the Gulf Stream modified maximum coastal total water levels and changed incident wave directions at the coast by up to 20°, with strong implications for the morphodynamic response and stability of the coast to the hurricane.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christie A. Hegermiller, chegermiller@whoi.edu
Save
  • Ardhuin, F., and Coauthors, 2012: Numerical wave modeling in conditions with strong currents: Dissipation, refraction, and relative wind. J. Phys. Oceanogr., 42, 21012120, https://doi.org/10.1175/JPO-D-11-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., S. T. Gille, D. Menemenlis, C. B. Rocha, N. Rascle, B. Chapron, J. Gula, and J. Molemaker, 2017: Small-scale open ocean currents have large effects on wind wave heights. J. Geophys. Res. Oceans, 122, 45004517, https://doi.org/10.1002/2016JC012413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banihashemi, S., and J. T. Kirby, 2019: Approximation of wave action conservation in vertically sheared mean flows. Ocean Modell., 143, 101460, https://doi.org/10.1016/j.ocemod.2019.101460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banihashemi, S., J. T. Kirby, and Z. Dong, 2017: Approximation of wave action flux velocity in strongly sheared mean flows. Ocean Modell., 116, 3347, https://doi.org/10.1016/j.ocemod.2017.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions, Part I. Modeling description and validation. J. Geophys. Res., 104, 76497666, https://doi.org/10.1029/98JC02622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowyer, P. J., and A. W. MacAfee, 2005: The theory of trapped-fetch waves with tropical cyclones—An operational prospective. Wea. Forecasting, 20, 229244, https://doi.org/10.1175/WAF849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639, https://doi.org/10.1002/qj.49708135027.

  • Chen, X., I. Ginis, and T. Hara, 2018: Sensitivity of offshore tropical cyclone wave simulations to spatial resolution in wave models. J. Mar. Sci. Eng., 6, 116, https://doi.org/10.3390/jmse6040116

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, C. O., III, H. Potter, B. Lund, H. Tamura, and H. C. Graber, 2018: Directional wave spectra observed during intense tropical cyclones. J. Geophys. Res. Oceans, 123, 773793, https://doi.org/10.1002/2017JC012943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C., and Coauthors, 2008: Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon. Wea. Rev., 136, 19902005, https://doi.org/10.1175/2007MWR2085.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2014: Tropical cyclone prediction using COAMPS-TC. Oceanography, 27 (3), 104115, https://doi.org/10.5670/oceanog.2014.72.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., K. K. Kahma, and M. A. Donelan, 1999: On momentum flux and velocity spectra over waves. Bound.-Layer Meteor., 92, 489, https://doi.org/10.1023/A:1002054820455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., H. C. Graber, D. Hauser, and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108, 8062, https://doi.org/10.1029/2000JC000715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., P. K. Taylor, and M. J. Yelland, 2005: Parameterizing the sea surface roughness. J. Phys. Oceanogr., 35, 835848, https://doi.org/10.1175/JPO2704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., L. P. Atkinson, and R. Tuleya, 2017: Observations and operational model simulations reveal the impact of Hurricane Matthew (2016) on the Gulf Stream and coastal sea level. Dyn. Atmos. Oceans, 80, 124138, https://doi.org/10.1016/j.dynatmoce.2017.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes in TOGA COARE. J. Geophys. Res., 101, 37473767, https://doi.org/10.1029/95JC03205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., I. Ginis, T. Hara, C. W. Wright, and E. J. Walsh, 2009: Numerical simulations and observations of surface wave fields under extreme tropical cyclone. J. Phys. Oceanogr., 39, 20972116, https://doi.org/10.1175/2009JPO4224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and Coauthors, 2008: Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System J. Comput. Phys., 227, 35953624, https://doi.org/10.1016/j.jcp.2007.06.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239281, https://doi.org/10.1016/S0377-0265(00)00049-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z., A8 (12), 93 pp.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., and H. L. Tolman, 1991: Effects of the Gulf Stream of ocean waves. J. Geophys. Res., 96, 12 75512 771, https://doi.org/10.1029/91JC00901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, https://doi.org/10.1029/2012JC007983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 1994: An improved mixed layer model for geophysical applications. J. Geophys. Res., 99, 25 23525 266.

  • Kirby, J. T., and T. M. Chen, 1989: Surface waves on vertically sheared flows: approximate dispersion relations. J. Geophys. Res., 94, 10131027, https://doi.org/10.1029/JC094iC01p01013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komen, G. J., S. Hasselmann, and K. Hasselmann, 1984: On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14, 12711285, https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudryavstev, V. N., S. A. Grodsky, V. A. Dulov, and A. N. Bol’shakov, 1995: Observations of wind waves in the Gulf Stream frontal zone. J. Geophys. Res., 100, 20 71520 727, https://doi.org/10.1029/95JC00425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudryavstev, V., P. Golubkin, and B. Chapron, 2015: A simplified wave enhancement criterion for moving extreme events. J. Geophys. Res. Oceans, 120, 75387558, https://doi.org/10.1002/2015JC011284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, N., G. Voulgaris, J. C. Warner, and M. Olabarrieta, 2012: Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Modell., 47, 6595, https://doi.org/10.1016/j.ocemod.2012.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, I. J., I. Ginis, T. Hara, H. L. Tolman, C. W. Wright, and E. J. Walsh, 2003: Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. J. Phys. Oceanogr., 33, 16801706, https://doi.org/10.1175/2410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olabarrieta, M., J. C. Warner, B. Armstrong, J. B. Zambon, and R. He, 2012: Ocean–atmosphere dynamics during Hurricane Ida and Nor’Ida: An application of the coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Modell., 43–44, 112137, https://doi.org/10.1016/j.ocemod.2011.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olabarrieta, M., W. R. Geyer, and N. Kumar, 2014: The role of morphology and wave–current interaction at tidal inlets: An idealized modeling analysis. J. Geophys. Res. Oceans, 119, 88188837, https://doi.org/10.1002/2014JC010191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oost, W. A., G. J. Komen, C. M. J. Jacobs, and C. van Oort, 2002: New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound.-Layer Meteor., 103, 409438, https://doi.org/10.1023/A:1014913624535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orescanin, M., B. Raubenheimer, and S. Elgar, 2014: Observations of wave effects on inlet circulation. Cont. Shelf Res., 82, 3742, https://doi.org/10.1016/j.csr.2014.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rapizo, H., A. V. Babanin, D. Provis, and W. E. Rogers, 2017: Current-induced dissipation in spectral wave models. J. Geophys. Res. Oceans, 122, 22052225, https://doi.org/10.1002/2016JC012367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rapizo, H., T. H. Durrant, and A. V. Babanin, 2018: An assessment of the impact of surface currents on wave modeling in the Southern Ocean. Ocean Dyn., 68, 939955, https://doi.org/10.1007/s10236-018-1171-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Ocean Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinates ocean model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stockdon, H. F., R. A. Holman, P. A. Howd, and A. H. Sallenger, 2006: Empirical parameterization of setup, swash, and runup. Coastal Eng., 53, 573588, https://doi.org/10.1016/j.coastaleng.2005.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SWAN Team, 2019: SWAN Scientific and Technical Documentation. Delft University of Technology, http://swanmodel.sourceforge.net/online_doc/swantech/swantech.html.

  • Taylor, P. K., and M. J. Yelland, 2001: The dependence of the sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31, 572590, https://doi.org/10.1175/1520-0485(2001)031<0572:TDOSSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thyng, K. M., C. A. Greene, R. D. Hetland, H. M. Zimmerle, and S. F. DiMarco, 2016: True colors of oceanography: Guidelines for effective and accurate colormap selection. Oceanography, 29 (3), 913, https://doi.org/10.5670/oceanog.2016.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, R. E., T. G. Asher, J. Heiderich, J. M. Bane, and R. A. Luettich, 2018: Transient response of the Gulf Stream to multiple hurricanes in 2017. Geophys. Res. Lett., 45, 10 50910 519, https://doi.org/10.1029/2018GL079180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uchiyama, Y., J. C. McWilliams, and A. F. Shchepetkin, 2010: Wave–current interaction in an oceanic circulation model with a vortex force formalism: Application to the surf zone. Ocean Modell., 34, 1635, https://doi.org/10.1016/j.ocemod.2010.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wandres, M., E. M. S. Wijeratne, S. Cosoli, and C. Pattiaratchi, 2017: The effect of the Leeuwin Current on offshore surface gravity waves in southwest Western Australia. J. Geophys. Res. Oceans, 122, 90479067, https://doi.org/10.1002/2017JC013006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell, 2005: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell., 8, 81113, https://doi.org/10.1016/j.ocemod.2003.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, R. P. Signell, C. K. Harris, and H. G. Arango, 2008: Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. Geosci., 34, 12841306, https://doi.org/10.1016/j.cageo.2008.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., B. Armstrong, R. He, and J. Zambon, 2010: Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Modell., 35, 230244, https://doi.org/10.1016/j.ocemod.2010.07.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., W. C. Schwab, J. H. List, I. Safak, M. Liste, and W. Baldwin, 2017: Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy. Cont. Shelf Res., 138, 118, https://doi.org/10.1016/j.csr.2017.02.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., and Coauthors, 2019: A Coupled-Ocean-Atmosphere-Wave Sediment Transport Numerical Modeling System (COAWST). USGS Github Code Repository, https://doi.org/10.5066/P9NQUAOW.

    • Crossref
    • Export Citation
  • White, B. S., and B. Fornberg, 1998: On the chance of freak waves at sea. J. Fluid Mech., https://doi.org/10.1017/s0022112097007751.

  • Young, I. R., 2003: A review of the sea state generated by hurricanes. Mar. Structures, 16, 201218, https://doi.org/10.1016/S0951-8339(02)00054-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zambon, J. B., R. He, and J. C. Warner, 2014a: Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model. Ocean Dyn., 64, 1535, https://doi.org/10.1007/s10236-014-0777-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zambon, J. B., R. He, and J. C. Warner, 2014b: Tropical to extratropical: Marine environmental changes associated with Superstorm Sandy prior to its landfall. Geophys. Res. Lett., 41, 89358943, https://doi.org/10.1002/2014GL061357

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zang, Z., Z. G. Xue, S. Bao, Q. Chen, N. D. Walker, A. S. Haag, Q. Ge, and Z. Yao, 2018: Numerical study of sediment dynamics during hurricane Gustav. Ocean Modell., 126, 2942, https://doi.org/10.1016/j.ocemod.2018.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zippel, S., and J. Thomson, 2015: Wave breaking and turbulence at a tidal inlet. J. Geophys. Res. Oceans, 120, 10161031, https://doi.org/10.1002/2014JC010025.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 949 286 31
PDF Downloads 1082 262 24