Baroclinic Instability with a Simple Model for Vertical Mixing

Matthew N. Crowe Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Search for other papers by Matthew N. Crowe in
Current site
Google Scholar
PubMed
Close
and
John R. Taylor Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Search for other papers by John R. Taylor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Here, we examine baroclinic instability in the presence of vertical mixing in an idealized setting. Specifically, we use a simple model for vertical mixing of momentum and buoyancy and expand the buoyancy and vorticity in a series for small Rossby numbers. A flow in subinertial mixed layer (SML) balance (see the study by Young in 1994) exhibits a normal mode linear instability, which is studied here using linear stability analysis and numerical simulations. The most unstable modes grow by converting potential energy associated with the basic state into kinetic energy of the growing perturbations. However, unlike the inviscid Eady problem, the dominant energy balance is between the buoyancy flux and the energy dissipated by vertical mixing. Vertical mixing reduces the growth rate and changes the orientation of the most unstable modes with respect to the front. By comparing with numerical simulations, we find that the predicted scale of the most unstable mode matches the simulations for small Rossby numbers while the growth rate and orientation agree for a broader range of parameters. A stability analysis of a basic state in SML balance using the inviscid QG equations shows that the angle of the unstable modes is controlled by the orientation of the SML flow, while stratification associated with an advection/diffusion balance controls the size of growing perturbations for small Ekman numbers and/or large Rossby numbers. These results imply that baroclinic instability can be inhibited by small-scale turbulence when the Ekman number is sufficiently large and might explain the lack of submesoscale eddies in observations and numerical models of the ocean surface mixed layer during summer.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John R. Taylor, j.r.taylor@damtp.cam.ac.uk

Abstract

Here, we examine baroclinic instability in the presence of vertical mixing in an idealized setting. Specifically, we use a simple model for vertical mixing of momentum and buoyancy and expand the buoyancy and vorticity in a series for small Rossby numbers. A flow in subinertial mixed layer (SML) balance (see the study by Young in 1994) exhibits a normal mode linear instability, which is studied here using linear stability analysis and numerical simulations. The most unstable modes grow by converting potential energy associated with the basic state into kinetic energy of the growing perturbations. However, unlike the inviscid Eady problem, the dominant energy balance is between the buoyancy flux and the energy dissipated by vertical mixing. Vertical mixing reduces the growth rate and changes the orientation of the most unstable modes with respect to the front. By comparing with numerical simulations, we find that the predicted scale of the most unstable mode matches the simulations for small Rossby numbers while the growth rate and orientation agree for a broader range of parameters. A stability analysis of a basic state in SML balance using the inviscid QG equations shows that the angle of the unstable modes is controlled by the orientation of the SML flow, while stratification associated with an advection/diffusion balance controls the size of growing perturbations for small Ekman numbers and/or large Rossby numbers. These results imply that baroclinic instability can be inhibited by small-scale turbulence when the Ekman number is sufficiently large and might explain the lack of submesoscale eddies in observations and numerical models of the ocean surface mixed layer during summer.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John R. Taylor, j.r.taylor@damtp.cam.ac.uk
Save
  • Bachman, S. D., and J. R. Taylor, 2016: Numerical simulations of the equilibrium between eddy-induced restratification and vertical mixing. J. Phys. Oceanogr., 46, 919935, https://doi.org/10.1175/JPO-D-15-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, https://doi.org/10.1175/JPO3101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr., 43, 24562474, https://doi.org/10.1175/JPO-D-13-063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., and R. Ferrari, 2018: Baroclinic instability in the presence of convection. J. Phys. Oceanogr., 48, 4560, https://doi.org/10.1175/JPO-D-17-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. M. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., G. Flierl, R. Ferrari, and B. Fox-Kemper, 2016: The role of mixed-layer instabilities in submesoscale turbulence. J. Fluid Mech., 788, 541, https://doi.org/10.1017/jfm.2015.700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., E. Campos, and A. Paiva, 2008: Submesoscale activity over the Argentinian shelf. Geophys. Res. Lett., 35, L15605, https://doi.org/10.1029/2008GL034736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1973: Planetary fluid dynamics. Dynamic Meteorology, P. Morel, Ed., D. Reidel, 97–351.

    • Crossref
    • Export Citation
  • Crowe, M. N., and J. R. Taylor, 2018: The evolution of a front in turbulent thermal wind balance. Part 1: Theory. J. Fluid Mech., 850, 179211, https://doi.org/10.1017/jfm.2018.448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowe, M. N., and J. R. Taylor, 2019: The evolution of a front in turbulent thermal wind balance. Part 2: Numerical simulations. J. Fluid Mech., 880, 326352, https://doi.org/10.1017/JFM.2019.688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Ferrari, R., and W. R. Young, 1997: On the development of thermohaline correlations as a result of nonlinear diffusive parameterizations. J. Mar. Res., 55, 10691101, https://doi.org/10.1357/0022240973224094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165, https://doi.org/10.1175/2007JPO3792.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, H., and O. M. Phillips, 1969: On the penetration of a turbulent layer into stratified fluid. J. Fluid Mech., 37, 643655, https://doi.org/10.1017/S0022112069000784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorbacher, K., D. Dommenget, P. Niiler, and A. Köhl, 2006: Ocean mixed layer depth: A subsurface proxy of ocean-atmosphere variability. J. Geophys. Res., 111, C07010, https://doi.org/10.1029/2003JC002157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., E. D’Asaro, C. Lee, and M. J. Perry, 2012: Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science, 337, 5458, https://doi.org/10.1126/science.1218740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale surface fronts and filaments: Secondary circulation, buoyancy flux, and frontogenesis. J. Fluid Mech., 823, 391432, https://doi.org/10.1017/JFM.2017.294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Özgökmen, A. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, https://doi.org/10.1007/s10236-013-0633-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and R. Ferrari, 1999: Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science, 283, 526529, https://doi.org/10.1126/science.283.5401.526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, H., P. Klein, B. Qiu, and Y. Sasai, 2014: Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun., 5, 5636, https://doi.org/10.1038/NCOMMS6636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumann, U., and T. Gerz, 1995: Turbulent mixing in stably stratified shear flows. J. Appl. Meteor., 34, 3348, https://doi.org/10.1175/1520-0450-34.1.33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and J. Taylor, 2013: A generalized mathematical model of geostrophic adjustment and frontogenesis: uniform potential vorticity. J. Fluid Mech., 736, 366413, https://doi.org/10.1017/jfm.2013.526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, T. J., and M. C. Gregg, 1986: Convectively driven turbulent mixing in the upper ocean. J. Phys. Oceanogr., 16, 17771798, https://doi.org/10.1175/1520-0485(1986)016<1777:CDTMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamper, M. A., and J. R. Taylor, 2017: The transition from symmetric to baroclinic instability in the Eady model. Ocean Dyn., 67, 6580, https://doi.org/10.1007/s10236-016-1011-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, https://doi.org/10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1970: On non-geostrophic baroclinic stability: Part II. J. Atmos. Sci., 27, 721726, https://doi.org/10.1175/1520-0469(1970)027<0721:ONGBSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H., 1953: On vernal blooming of phytoplankton. Conseil Exp. Mer, 18, 287295, https://doi.org/10.1093/icesjms/18.3.287.

  • Tandon, A., and C. Garrett, 1994: Mixed layer restratification due to a horizontal density gradient. J. Phys. Oceanogr., 24, 14191424, https://doi.org/10.1175/1520-0485(1994)024<1419:MLRDTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1953: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. London, 219A, 186203, https://doi.org/10.1098/rspa.1953.0139.

    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., 2008: Numerical simulations of the stratified oceanic bottom boundary layer. Ph.D. thesis, University of California, San Diego, 212 pp., https://escholarship.org/uc/item/5s30n2ts.

  • Taylor, J. R., 2016: Turbulent mixing, restratification, and phytoplankton growth at a submesoscale eddy. Geophys. Res. Lett., 43, 57845792, https://doi.org/10.1002/2016GL069106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2011: Numerical simulations of the competition between wind-driven mixing and surface heating in triggering spring phytoplankton blooms. Limnol. Oceanogr., 56, 22932307, https://doi.org/10.4319/lo.2011.56.6.2293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., 2005: Destruction of potential vorticity by winds. J. Phys. Oceanogr., 35, 24572466, https://doi.org/10.1175/JPO2830.1.

  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. Lazar, C. Buckingham, A. C. Naveira Garabato, G. M. Damerell, and K. J. Heywood, 2016: Open-ocean submesoscale motions: A full seasonal cycle of mixed layer instabilities from gliders. J. Phys. Oceanogr., 46, 12851307, https://doi.org/10.1175/JPO-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2005: The Turbulent Ocean. Cambridge University Press, 484 pp.

    • Crossref
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Venayagamoorthy, S. K., and D. D. Stretch, 2010: On the turbulent prandtl number in homogeneous stably stratified turbulence. J. Fluid Mech., 644, 359369, https://doi.org/10.1017/S002211200999293X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and M. J. McPhaden, 2016: A simple analytical model of the diurnal Ekman layer. J. Phys. Oceanogr., 46, 28772894, https://doi.org/10.1175/JPO-D-16-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J., L. N. Thomas, J. Gula, and J. C. McWilliams, 2018: Effects of the submesoscale on the potential vorticity budget of ocean mode waters. J. Phys. Oceanogr., 48, 21412165, https://doi.org/10.1175/JPO-D-17-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., 1994: The subinertial mixed layer approximation. J. Phys. Oceanogr., 24, 18121826, https://doi.org/10.1175/1520-0485(1994)024<1812:TSMLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., and L. Chen, 1995: Baroclinic instability and thermohaline gradient alignment in the mixed layer. J. Phys. Oceanogr., 25, 31723185, https://doi.org/10.1175/1520-0485(1995)025<3172:BIATGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., P. B. Rhines, and C. J. R. Garrett, 1982: Shear-flow dispersion, internal waves and horizontal mixing in the ocean. J. Phys. Oceanogr., 12, 515527, https://doi.org/10.1175/1520-0485(1982)012<0515:SFDIWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 596 141 6
PDF Downloads 602 126 5