On the Steadiness and Instability of the Intermediate Western Boundary Current between 24° and 18°S

Dante C. Napolitano Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Dante C. Napolitano in
Current site
Google Scholar
PubMed
Close
,
Ilson C. A. da Silveira Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Ilson C. A. da Silveira in
Current site
Google Scholar
PubMed
Close
,
Cesar B. Rocha Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Cesar B. Rocha in
Current site
Google Scholar
PubMed
Close
,
Glenn R. Flierl Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Glenn R. Flierl in
Current site
Google Scholar
PubMed
Close
,
Paulo H. R. Calil Helmholtz-Zentrum Geesthacht, Geesthacht, Germany

Search for other papers by Paulo H. R. Calil in
Current site
Google Scholar
PubMed
Close
, and
Renato P. Martins Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello, Rio de Janeiro, Brazil

Search for other papers by Renato P. Martins in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Intermediate Western Boundary Current (IWBC) transports Antarctic Intermediate Water across the Vitória–Trindade Ridge (VTR), a seamount chain at ~20°S off Brazil. Recent studies suggest that the IWBC develops a strong cyclonic recirculation in Tubarão Bight, upstream of the VTR, with weak time dependency. We herein use new quasi-synoptic observations, data from the Argo array, and a regional numerical model to describe the structure and variability of the IWBC and to investigate its dynamics. Both shipboard acoustic Doppler current profiler (ADCP) data and trajectories of Argo floats confirm the existence of the IWBC recirculation, which is also captured by our Regional Oceanic Modeling System (ROMS) simulation. An “intermediate-layer” quasigeostrophic (QG) model indicates that the ROMS time-mean flow is a good proxy for the IWBC steady state, as revealed by largely parallel isolines of streamfunction ψ¯ and potential vorticity Q¯; a ψ¯Q¯ scatter diagram also shows that the IWBC is potentially unstable. Further analysis of the ROMS simulation reveals that remotely generated, westward-propagating nonlinear eddies are the main source of variability in the region. These eddies enter the domain through the Tubarão Bight eastern edge and strongly interact with the IWBC. As they are advected downstream and negotiate the local topography, the eddies grow explosively through horizontal shear production.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dante C. Napolitano, dante.napolitano@usp.br

Abstract

The Intermediate Western Boundary Current (IWBC) transports Antarctic Intermediate Water across the Vitória–Trindade Ridge (VTR), a seamount chain at ~20°S off Brazil. Recent studies suggest that the IWBC develops a strong cyclonic recirculation in Tubarão Bight, upstream of the VTR, with weak time dependency. We herein use new quasi-synoptic observations, data from the Argo array, and a regional numerical model to describe the structure and variability of the IWBC and to investigate its dynamics. Both shipboard acoustic Doppler current profiler (ADCP) data and trajectories of Argo floats confirm the existence of the IWBC recirculation, which is also captured by our Regional Oceanic Modeling System (ROMS) simulation. An “intermediate-layer” quasigeostrophic (QG) model indicates that the ROMS time-mean flow is a good proxy for the IWBC steady state, as revealed by largely parallel isolines of streamfunction ψ¯ and potential vorticity Q¯; a ψ¯Q¯ scatter diagram also shows that the IWBC is potentially unstable. Further analysis of the ROMS simulation reveals that remotely generated, westward-propagating nonlinear eddies are the main source of variability in the region. These eddies enter the domain through the Tubarão Bight eastern edge and strongly interact with the IWBC. As they are advected downstream and negotiate the local topography, the eddies grow explosively through horizontal shear production.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dante C. Napolitano, dante.napolitano@usp.br
Save
  • Argo, 2019: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC). SEANOE, https://doi.org/10.17882/42182.

    • Crossref
    • Export Citation
  • Biló, T. C., I. C. A. da Silveira, W. C. Belo, B. M. Castro, and A. R. Piola, 2014: Methods for estimating the velocities of the Brazil Current in the pre-salt reservoir area off southeast Brazil (23° S–26° S). Ocean Dyn., 64, 14311446, https://doi.org/10.1007/s10236-014-0761-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1968: On the stability of quasi-geostrophic flow. J. Atmos. Sci., 25, 929931, https://doi.org/10.1175/1520-0469(1968)025<0929:OTSOQG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boebel, O., C. Schmid, and W. Zenk, 1997: Flow and recirculation of Antarctic Intermediate Water across the Rio Grande rise. J. Geophys. Res., 102, 20 96720 986, https://doi.org/10.1029/97JC00977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boebel, O., R. Davis, M. Ollitrault, R. Peterson, P. Richardson, C. Schmid, and W. Zenk, 1999: The intermediate depth circulation of the western South Atlantic. Geophys. Res. Lett., 26, 33293332, https://doi.org/10.1029/1999GL002355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., and D. B. Haidvogel, 1976: Two-dimensional turbulence above topography. J. Fluid Mech., 78, 129154, https://doi.org/10.1017/S002211207600236X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campos, E. J., 2006: Equatorward translation of the Vitória Eddy in a numerical simulation. Geophys. Res. Lett., 33, L22607, https://doi.org/10.1029/2006GL026997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, R., G. R. Flierl, and C. Wunsch, 2014: A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J. Phys. Oceanogr., 44, 23362352, https://doi.org/10.1175/JPO-D-14-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, V. S., G. N. Mill, M. Gabioux, G. S. Grossmann-Matheson, and A. M. Paiva, 2017: The recirculation of the intermediate western boundary current at the Tubarão Bight–Brazil. Deep-Sea Res. I, 120, 4860, https://doi.org/10.1016/j.dsr.2016.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silveira, I. C. A., and G. R. Flierl, 2002: Eddy formation in 2 1/2-layer, quasigeostrophic jets. J. Phys. Oceanogr., 32, 729745, https://doi.org/10.1175/1520-0485(2002)032<0729:EFILQJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silveira, I. C. A., L. Calado, B. Castro, M. Cirano, J. Lima, and A. S. Mascarenhas, 2004: On the baroclinic structure of the Brazil Current–Intermediate Western Boundary Current system at 22°–23°S. Geophys. Res. Lett., 31, L14308, https://doi.org/10.1029/2004GL020036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silveira, I. C. A., J. Lima, A. Schmidt, W. Ceccopieri, A. Sartori, C. Franscisco, and R. Fontes, 2008: Is the meander growth in the Brazil Current system off Southeast Brazil due to baroclinic instability? Dyn. Atmos. Oceans, 45, 187207, https://doi.org/10.1016/j.dynatmoce.2008.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, D. L., and S. S. Signorini, 1985: Vertical structure of the Brazil Current. Nature, 315, 4850, https://doi.org/10.1038/315048a0.

  • Evans, D. L., S. R. Signorini, and L. B. Miranda, 1983: A note on the transport of the Brazil Current. J. Phys. Oceanogr., 13, 17321738, https://doi.org/10.1175/1520-0485(1983)013<1732:ANOTTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Firing, E., J. Ranada, and P. Caldwell, 1995: Processing ADCP data with the CODAS software system version 3.1. Tech. Doc., 218 pp.

  • Gill, A., J. Green, and A. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res. Oceanogr. Abstr., 21, 499528, https://doi.org/10.1016/0011-7471(74)90010-2.

    • Search Google Scholar
    • Export Citation
  • Hart, J., 1974: On the mixed stability program for quasi-geostrophic ocean currents. J. Phys. Oceanogr., 4, 349356, https://doi.org/10.1175/1520-0485(1974)004<0349:OTMSPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2005: Available potential energy in the world’s oceans. J. Mar. Res., 63, 141158, https://doi.org/10.1357/0022240053693770.

  • Isern-Fontanet, J., B. Chapron, G. Lapeyre, and P. Klein, 2006: Potential use of microwave sea surface temperatures for the estimation of ocean currents. Geophys. Res. Lett., 33, L24608, https://doi.org/10.1029/2006GL027801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebedev, K. V., H. Yoshinari, N. A. Maximenko, and P. W. Hacker, 2007: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Tech. Note 4(2), 16 pp., http://apdrc.soest.hawaii.edu/projects/yomaha/yomaha07/YoMaHa070612.pdf.

  • Legeais, J.-F., M. Ollitrault, and M. Arhan, 2013: Lagrangian observations in the intermediate western boundary current of the South Atlantic. Deep-Sea Res. II, 85, 109126, https://doi.org/10.1016/j.dsr2.2012.07.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lima, M. O., M. Cirano, M. M. Mata, M. Goes, G. Goni, and M. Baringer, 2016: An assessment of the Brazil Current baroclinic structure and variability near 22° S in Distinct Ocean Forecasting and Analysis Systems. Ocean Dyn., 66, 893916, https://doi.org/10.1007/s10236-016-0959-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magalhães, F. C., J. L. L. Azevedo, and L. R. Oliveira, 2017: Energetics of eddy-mean flow interactions in the Brazil Current between 20°S and 36°S. J. Geophys. Res. Oceans, 122, 6129–6146, https://doi.org/10.1002/2016JC012609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mano, M. F., A. M. Paiva, A. R. Torres Jr., and A. L. Coutinho, 2009: Energy flux to a cyclonic eddy off Cabo Frio, Brazil. J. Phys. Oceanogr., 39, 29993010, https://doi.org/10.1175/2009JPO4026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mata, M. M., S. E. Wijffels, J. A. Church, and M. Tomczak, 2006: Eddy shedding and energy conversions in the East Australian Current. J. Geophys. Res., 111, C09034, https://doi.org/10.1029/2006JC003592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mata, M. M., M. Cirano, M. R. van Caaspel, C. Fonteles, G. Goni, and M. Baringer, 2013: Observations of the Brazil Current baroclinic transportation near 22°S: Variability from the AX97 XBT transect and satellite altimetry. Proceedings of 20 years of progress in radar altimetry: 24–29 September 2012, Venice, Italy, ESA SP, Vol. 710, European Space Agency, 151.

  • Morten, A. J., B. K. Arbic, and G. R. Flierl, 2017: Wavenumber-frequency analysis of single-layer shallow-water beta-plane quasi-geostrophic turbulence. Phys. Fluids, 29, 106602, https://doi.org/10.1063/1.5003846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, T. J., Y. Ikeda, N. Zangenberg, and L. V. Nonato, 1998: Direct measurements of western boundary currents off Brazil between 20°S and 28°S. J. Geophys. Res., 103, 54295437, https://doi.org/10.1029/97JC03529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, L. R., A. R. Piola, M. M. Mata, and I. D. Soares, 2009: Brazil Current surface circulation and energetics observed from drifting buoys. J. Geophys. Res. Oceans, 114, C10006, https://doi.org/10.1029/2008JC004900.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J. J., K. Kim, B. A. King, and S. C. Riser, 2005: An advanced method to estimate deep currents from profiling floats. J. Atmos. Oceanic Technol., 22, 12941304, https://doi.org/10.1175/JTECH1748.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer, 710 pp.

  • Polzin, K., J. Toole, J. Ledwell, and R. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, https://doi.org/10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Read, P., P. Rhines, and A. White, 1986: Geostrophic scatter diagrams and potential vorticity dynamics. J. Atmos. Sci., 43, 32263240, https://doi.org/10.1175/1520-0469(1986)043<3226:GSDAPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., 1991: South Atlantic interbasin exchange. J. Geophys. Res., 96, 26752692, https://doi.org/10.1029/90JC02422.

  • Rocha, C. B., I. C. da Silveira, B. M. Castro, and J. A. M. Lima, 2014: Vertical structure, energetics, and dynamics of the Brazil Current System at 22°S–28°S. J. Geophys. Res. Oceans, 119, 5269, https://doi.org/10.1002/2013JC009143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, C., and S. L. Garzoli, 2009: New observations of the spreading and variability of the Antarctic Intermediate Water in the Atlantic. J. Mar. Res., 67, 815843, https://doi.org/10.1357/002224009792006151.

    • Search Google Scholar
    • Export Citation
  • Schmid, C., and S. Majumder, 2018: Transport variability of the Brazil Current from observations and a data assimilation model. Ocean Sci., 14, 417436, https://doi.org/10.5194/os-14-417-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, C., G. Siedler, and W. Zenk, 2000: Dynamics of intermediate water circulation in the subtropical South Atlantic. J. Phys. Oceanogr., 30, 31913211, https://doi.org/10.1175/1520-0485(2000)030<3191:DOIWCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., 1995: On the interbasin-scale thermohaline circulation. Rev. Geophys., 33, 151173, https://doi.org/10.1029/95RG00879.

    • Search Google Scholar
    • Export Citation
  • Soutelino, R. G., I. C. da Silveira, A. A. Gangopadhyay, and J. Miranda, 2011: Is the Brazil Current eddy-dominated to the north of 20°S? Geophys. Res. Lett., 38, L03607, https://doi.org/10.1029/2010GL046276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H. M., 1965: The Gulf Stream: A Physical and Dynamical Description. 2nd ed., University of California Press, 248 pp.

  • Stramma, L., Y. Ikeda, and R. G. Peterson, 1990: Geostrophic transport in the Brazil Current region north of 20 S. Deep-Sea Res., 37A, 18751886, https://doi.org/10.1016/0198-0149(90)90083-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuchiya, M., L. D. Talley, and M. S. McCartney, 1994: Water-mass distributions in the western South Atlantic; A section from South Georgia Island (54S) northward across the equator. J. Mar. Res., 52, 5581, https://doi.org/10.1357/0022240943076759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge University Press, 964 pp.

  • Weatherall, P., and Coauthors, 2015: A new digital bathymetric model of the world’s oceans. Earth Space Sci., 2, 331345, https://doi.org/10.1002/2015EA000107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wienders, N., M. Arhan, and H. Mercier, 2000: Circulation at the western boundary of the South and Equatorial Atlantic: Exchanges with the ocean interior. J. Mar. Res., 58, 10071039, https://doi.org/10.1357/002224000763485782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wüst, G., 1935: The Stratosphere of the Atlantic Ocean. Scientific Results of the German Atlantic Expedition of the Research Vessel “Meteor” 1925–27, Vol. 6, 109288 (English translation, W. J. Emery, Ed., Amerind, 1978).

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1554 374 45
PDF Downloads 519 76 7