Influence of Abyssal Mixing on the Multilayer Circulation in the South China Sea

Qi Quan State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, and Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China

Search for other papers by Qi Quan in
Current site
Google Scholar
PubMed
Close
and
Huijie Xue State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, and Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China, and School of Marine Sciences, University of Maine, Orono, Maine

Search for other papers by Huijie Xue in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

By parameterizing the abyssal mixing as the exchange velocity (entrainment/detrainment) between the middle and deep layers of the South China Sea (SCS), its effects on the multilayer circulation are examined. Results indicate that the cyclonic circulation in the deep SCS appears only when the mixing induces an entrainment of at least 0.72 Sv (1 Sv ≡ 106 m3 s−1) from the deep to the middle layer, which is equivalent to a diapycnal diffusivity of 0.65 × 10−3 m2 s−1 or a net input rate of gravitational potential energy (GPE) of 6.89 GW, respectively. It is also found that tidal mixing in the SCS is stronger than the threshold for the generation of the cyclonic abyssal circulation, but the pattern and evolution of the deep circulation and meridional overturning circulation also depend on the spatiotemporal variability of the mixing. Moreover, the abyssal mixing is able to intensify the anticyclonic circulation in the middle layer but weaken the cyclonic circulation in the upper layer. Vorticity analysis suggests that the upward net flux induced by the abyssal mixing leads to vortex stretching (squeezing) and modulates the pressure gradient by redistributing the layer thickness, hence affects the pattern and strength of the circulation in the middle (deep) layer of the SCS, respectively. The depth-integrated effect of the thickness variation can modulate the pressure gradient across all layers and hence influence the upper-layer circulation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huijie Xue, huijiexue@scsio.ac.cn

Abstract

By parameterizing the abyssal mixing as the exchange velocity (entrainment/detrainment) between the middle and deep layers of the South China Sea (SCS), its effects on the multilayer circulation are examined. Results indicate that the cyclonic circulation in the deep SCS appears only when the mixing induces an entrainment of at least 0.72 Sv (1 Sv ≡ 106 m3 s−1) from the deep to the middle layer, which is equivalent to a diapycnal diffusivity of 0.65 × 10−3 m2 s−1 or a net input rate of gravitational potential energy (GPE) of 6.89 GW, respectively. It is also found that tidal mixing in the SCS is stronger than the threshold for the generation of the cyclonic abyssal circulation, but the pattern and evolution of the deep circulation and meridional overturning circulation also depend on the spatiotemporal variability of the mixing. Moreover, the abyssal mixing is able to intensify the anticyclonic circulation in the middle layer but weaken the cyclonic circulation in the upper layer. Vorticity analysis suggests that the upward net flux induced by the abyssal mixing leads to vortex stretching (squeezing) and modulates the pressure gradient by redistributing the layer thickness, hence affects the pattern and strength of the circulation in the middle (deep) layer of the SCS, respectively. The depth-integrated effect of the thickness variation can modulate the pressure gradient across all layers and hence influence the upper-layer circulation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Huijie Xue, huijiexue@scsio.ac.cn
Save
  • Alford, M. H., 2010: Sustained, full-water-column observations of internal waves and mixing near Mendocino Escarpment. J. Phys. Oceanogr., 40, 26432660, https://doi.org/10.1175/2010JPO4502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: two tales of two ridges. J. Phys. Oceanogr., 41, 22112222, https://doi.org/10.1175/JPO-D-11-073.1.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2015: The formation and fate of internal waves in the South China Sea. Nature, 521, 6569, https://doi.org/10.1038/nature14399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amante, C., and B. W. Eakins, 2009: ETOPO1 1 Arc-Minute Global Relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, National Geophysical Data Center, accessed 18 October 2015, https://doi.org/10.7289/V5C8276M.

    • Crossref
    • Export Citation
  • Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, 2011: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157174, https://doi.org/10.1175/2010BAMS2946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, S., X. Long, and S. Wang, 2007: A model study of the summer southeast Vietnam offshore current in the southern South China Sea. Cont. Shelf Res., 27, 23572372, https://doi.org/10.1016/j.csr.2007.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, X. Cao, and B. S. Giese, 2000a: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J. Phys. Oceanogr., 30, 294309, https://doi.org/10.1175/1520-0485(2000)030<0294:ASODAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., G. Chepurin, and X. Cao, 2000b: A Simple Ocean Data Assimilation analysis of the global upper ocean 1950–95. Part II: Results. J. Phys. Oceanogr., 30, 311326, https://doi.org/10.1175/1520-0485(2000)030<0311:ASODAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. C., N. L. Edmons, and C. Fan, 1999: Dynamical mechanisms for the South China Sea seasonal circulation and thermohaline variabilities. J. Phys. Oceanogr., 29, 29712991, https://doi.org/10.1175/1520-0485(1999)029<2971:DMFTSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferron, B., H. Mercier, K. Speer, A. Gargett, and K. L. Polzin, 1998: Mixing in the Romanche fracture zone. J. Phys. Oceanogr., 28, 19291945, https://doi.org/10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gan, J., Z. Liu, and C. Hui, 2016: A three-layer alternating spinning circulation in the South China Sea. J. Phys. Oceanogr., 46, 23092315, https://doi.org/10.1175/JPO-D-16-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilson, J., and D. Roemmich, 2002: Mean and temporal variability in Kuroshio geostrophic transport south of Taiwan (1993–2001). J. Oceanogr., 58, 183195, https://doi.org/10.1023/A:1015841120927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, Y., and R. Huang, 2008: Stommel’s box model of thermohaline circulation revisited—The role of mechanical energy supporting mixing and the wind-driven gyration. J. Phys. Oceanogr., 38, 909917, https://doi.org/10.1175/2007JPO3535.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., 1999: Mixing and energetics of the oceanic thermohaline circulation. J. Phys. Oceanogr., 29, 727746, https://doi.org/10.1175/1520-0485(1999)029<0727:MAEOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R., 2009: Mixing and energetics of the oceanic circulation. Ocean Circulation: Wind-Driven and Thermohaline Processes, Cambridge University Press, 6062.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., and J. D. Thompson, 1980: A numerical study of Loop Current intrusions and eddy shedding in Gulf of Mexico. J. Phys. Oceanogr., 10, 16111651, https://doi.org/10.1175/1520-0485(1980)010<1611:ANSOLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jan, S., C. S. Chern, J. Wang, and S. Y. Chao, 2007: Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. J. Geophys. Res., 112, C06019, https://doi.org/10.1029/2006JC004003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, https://doi.org/10.1175/2009JPO4085.1.

    • Search Google Scholar
    • Export Citation
  • Jing, Z., and L. Wu, 2014: Intensified diapycnal mixing in the midlatitude western boundary currents. Sci. Rep., 4, 7412, https://doi.org/10.1038/srep07412.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus, 19, 98106, https://doi.org/10.3402/tellusa.v19i1.9753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lan, J., N. Zhang, and Y. Wang, 2013: On the dynamics of the South China Sea deep circulation. J. Geophys. Res. Oceans, 118, 12061210, https://doi.org/10.1002/jgrc.20104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lan, J., Y. Wang, F. Cui, and N. Zhang, 2015: Seasonal variation in the South China Sea deep circulation. J. Geophys. Res. Oceans, 120, 16821690, https://doi.org/10.1002/2014JC010413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701703, https://doi.org/10.1038/364701a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. St. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence of enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, https://doi.org/10.1038/35003164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R. C., T. Y. Tang, M. H. Chang, and E. A. D’Asora, 2005: Energy of nonlinear internal waves in the South China Sea. Geophys. Res. Lett., 32, L05615, https://doi.org/10.1029/2004GL022012.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and J. Gan, 2017: Three-dimensional pathways of water masses in the South China Sea: A modeling study. J. Geophys. Res. Oceans, 122, 60396054, https://doi.org/10.1002/2016JC012511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.

  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., R. Ferrari, M. Nikurashin, and W. R. Peltier, 2015: Influence of enhanced abyssal mixing on stratification and the ocean overturning circulation. J. Phys. Oceanogr., 45, 25802597, https://doi.org/10.1175/JPO-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mashayek, A., H. Salehipour, D. B. Boudra, C. P. Caulfield, R. Ferrari, M. Nikurashin, W. R. Peltier, and W. D. Smyth, 2017: Efficiency of turbulent mixing in the abyssal ocean circulation. Geophys. Res. Lett., 44, 62966306, https://doi.org/10.1002/2016GL072452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and P. K. Kundu, 1988: A numerical investigation of the Somali Current during the Southwest Monsoon. J. Mar. Res., 46, 2558, https://doi.org/10.1357/002224088785113711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., and P. K. Kundu, 1989: A numerical investigation of the sea surface temperature variability in the Arabian Sea. J. Geophys. Res., 94, 16 09716 114, https://doi.org/10.1029/JC094iC11p16097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., P. K. Kundu, and R. L. Molinari, 1993: A numerical investigation of dynamics, thermodynamics and mixed-layer processes in the Indian Ocean. Prog. Oceanogr., 31, 181244, https://doi.org/10.1016/0079-6611(93)90002-U.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and W. K. Dewar, 1998: Vertical mixing and cabbeling in layered models. J. Phys. Oceanogr., 28, 14581480, https://doi.org/10.1175/1520-0485(1998)028<1458:VMACIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mertz, G., and D. G. Wright, 1992: Interpretations of the JEBAR term. J. Phys. Oceanogr., 22, 301305, https://doi.org/10.1175/1520-0485(1992)022<0301:IOTJT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res., 13, 707730, https://doi.org/10.1016/0011-7471(66)90602-4.

  • Munk, W. H., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, https://doi.org/10.1002/grl.50542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2004: Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res., 109, C04027, https://doi.org/10.1029/2003JC001923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, https://doi.org/10.1126/science.276.5309.93.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., J. B. Girton, and J. A. Whitehead, 2006: Deepwater overflow through Luzon Strait. J. Geophys. Res., 111, C01002, https://doi.org/10.1029/2005JC003139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, Q., and H. Xue, 2018: Layered model and insights into the vertical coupling of the South China Sea circulation in the upper and middle layers. Ocean Modell., 129, 7592, https://doi.org/10.1016/j.ocemod.2018.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 2003: Thermohaline circulation: The current climate. Nature, 421, 699, https://doi.org/10.1038/421699a.

  • Scott, R. B., J. A. Goff, A. C. N. Garabato, and A. J. G. Nurser, 2011: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res., 116, C09029, https://doi.org/10.1029/2011JC007005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, Y., H. Xue, D. Wang, F. Chai, Q. Xie, J. Yao, and J. Xiao, 2014: Meridional overturning circulation in the South China Sea envisioned from the high-resolution global reanalysis data GLBa0.08. J. Geophys. Res. Oceans, 119, 30123028, https://doi.org/10.1002/2013JC009583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, https://doi.org/10.1029/2002GL015633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H., and A. B. Arons, 1960: On the abyssal circulation of the world ocean-I. Stationary planetary flow patterns on a sphere. Deep-Sea Res., 6, 140154, https://doi.org/10.1016/0146-6313(59)90065-6.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2013: Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: Schematics and transports. Oceanography, 26, 8097, https://doi.org/10.5670/oceanog.2013.07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, J., Q. Yang, X. Liang, L. Xie, D. Hu, F. Wang, and T. Qu, 2006: Observation of Luzon Strait transport. Geophys. Res. Lett., 33, L19607, https://doi.org/10.1029/2006GL026272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, J., Q. Yang, and W. Zhao, 2009: Enhanced diapycnal mixing in the South China Sea. J. Phys. Oceanogr., 39, 31913203, https://doi.org/10.1175/2009JPO3899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., D. Chen, and J. Su, 2006: Generation and life cycle of the dipole in the South China Sea summer circulation. J. Geophys. Res., 111, C06002, https://doi.org/10.1029/2005JC003314.

    • Search Google Scholar
    • Export Citation
  • Wang, G., S. Xie, T. Qu, and R. Huang, 2011: Deep South China Sea circulation. Geophys. Res. Lett., 38, L05601, https://doi.org/10.1029/2010GL046626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., S. Peng, Z. Liu, R. Huang, Y. Qian, and Y. Li, 2016: Tidal mixing in the South China Sea: An estimate based on the internal tide energetics. J. Phys. Oceanogr., 46, 107124, https://doi.org/10.1175/JPO-D-15-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., Z. Liu, and S. Peng, 2017: Impact of tidal mixing on water mass transformation and circulation in the South China Sea. J. Phys. Oceanogr., 47, 419432, https://doi.org/10.1175/JPO-D-16-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Xiao, J., Q. Xie, C. Liu, J. Chen, D. Wang, and M. Chen, 2013: A diagnostic model of the South China Sea bottom circulation in consideration of tidal mixing, eddy-induced mixing and topography(in Chinese with English abstract). Acta Oceanol. Sin., 35, 113.

    • Search Google Scholar
    • Export Citation
  • Xu, F., and L. Y. Oey, 2014: State analysis using the Local Ensemble Transform Kalman Filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea. Ocean Dyn., 64, 905923, https://doi.org/10.1007/s10236-014-0720-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., L. Wu, S. Sun, and Z. Chen, 2015: Low-frequency variability of monsoon-driven circulation with application to the South China Sea. J. Phys. Oceanogr., 45, 16321649, https://doi.org/10.1175/JPO-D-14-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., J. Tian, and W. Zhao, 2010: Observation of Luzon Strait transport in summer 2007. Deep-Sea Res. I, 57, 670676, https://doi.org/10.1016/j.dsr.2010.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Q., W. Zhao, X. Liang, and J. Tian, 2016: Three-dimensional distribution of turbulent mixing in the South China Sea. J. Phys. Oceanogr., 46, 769788, https://doi.org/10.1175/JPO-D-14-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M., and T. Qu, 2004: Seasonal variability of the large-scale currents near the coast of the Philippines. J. Phys. Oceanogr., 34, 844855, https://doi.org/10.1175/1520-0485(2004)034<0844:SVOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M., J. McCreary, Z. Yu, and R. Furue, 2009: The South China Sea throughflow retrieved from climatological data. J. Phys. Oceanogr., 39, 753766, https://doi.org/10.1175/2008JPO3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Z., S. Shen, J. P. McCreary, M. Yaremchuk, and R. Furue, 2007: South China Sea throughflow as evidenced by satellite images and numerical experiments. Geophys. Res. Lett., 34, L01601, https://doi.org/10.1029/2006GL028103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Z., J. P. McCreary, M. Yaremchuk, and R. Furue, 2008: Subsurface salinity balance in the South China Sea. J. Phys. Oceanogr., 38, 527539, https://doi.org/10.1175/2007JPO3661.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., V. Klemas, Q. Zheng, and X. Yan, 2004: Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys. Res. Lett., 31, L06302, https://doi.org/10.1029/2004GL021061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, W., C. Zhou, J. Tian, Q. Yang, B. Wang, L. Xie, and T. Qu, 2014: Deep water circulation in the Luzon Strait. J. Geophys. Res. Oceans, 119, 790804, https://doi.org/10.1002/2013JC009587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., W. Zhao, J. Tian, Q. Yang, and T. Qu, 2014: Variability of the deep-water overflow in the Luzon Strait. J. Phys. Oceanogr., 44, 29722986, https://doi.org/10.1175/JPO-D-14-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, C., W. Zhao, J. Tian, Q. Yang, X. Huang, Z. Zhang, and T. Qu, 2018: Observations of deep current at the western boundary of the northern Philippine Basin. Sci. Rep., 8, 14334, https://doi.org/10.1038/s41598-018-32541-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., G. Fang, Z. Wei, Y. Wang, F. Teng, and T. Qu, 2016: Seasonal variability of the meridional overturning circulation in the South China Sea and its connection with inter-ocean transport based on SODA2.2.4. J. Geophys. Res. Oceans, 121, 30903105, https://doi.org/10.1002/2015JC011443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., J. Sun, Y. Wang, Z. Wei, D. Yang, and T. Qu, 2017: Effect of potential vorticity flux on the circulation in the South China Sea. J. Geophys. Res. Oceans, 122, 64546469, https://doi.org/10.1002/2016JC012375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol2.pdf.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 790 349 15
PDF Downloads 516 112 13