ACC Subduction by Mesoscales

V. M. Canuto NASA Goddard Institute for Space Studies, and Department of Applied Physics and Mathematics, Columbia University, New York, New York

Search for other papers by V. M. Canuto in
Current site
Google Scholar
PubMed
Close
and
Y. Cheng NASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Columbia University, New York, New York

Search for other papers by Y. Cheng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The mesoscale contribution to subduction in the Southern Ocean was studied by Sallée and Rintoul in 2011 (SR11) using the following mesoscale model. The adiabatic (A) regime was modeled with the Gent–McWilliams streamfunction, the diabatic (D) regime was modeled with tapering functions, the D–A interface was taken to be at the mixed layer depth, and the mesoscale diffusivity either was a constant or was given by a 2D model. Since the resulting subductions were an order of magnitude smaller than the data of ±200 m yr−1 as reported by Mazloff et al. in 2010, SR11 showed that if, instead of the above model-dependent mesoscale diffusivities, they employed the ones reported in 2008 by Sallée et al. from surface drifter observations, the subductions compared significantly better to the data. On those grounds, SR11 suggested a 10-fold increase of the diffusivity. In this work, we suggest that, since the mesoscale diffusivity is but one component of a much large mesoscale parameterization, one should first assess the latter’s overall performance followed by an assessment of the predicted Antarctic Circumpolar Current (ACC) subduction. We employ the mesoscale model formulated by Canuto et al. in 2018 and 2019 that includes recent theoretical and observational advances and that was assessed against a variety of data, including the output of 17 other OGCMs. The ACC diffusivities compare well to drifter data from Sallée et al., and the ACC subduction rates are in agreement with the data.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: V. M. Canuto, vmcanuto@gmail.com

Abstract

The mesoscale contribution to subduction in the Southern Ocean was studied by Sallée and Rintoul in 2011 (SR11) using the following mesoscale model. The adiabatic (A) regime was modeled with the Gent–McWilliams streamfunction, the diabatic (D) regime was modeled with tapering functions, the D–A interface was taken to be at the mixed layer depth, and the mesoscale diffusivity either was a constant or was given by a 2D model. Since the resulting subductions were an order of magnitude smaller than the data of ±200 m yr−1 as reported by Mazloff et al. in 2010, SR11 showed that if, instead of the above model-dependent mesoscale diffusivities, they employed the ones reported in 2008 by Sallée et al. from surface drifter observations, the subductions compared significantly better to the data. On those grounds, SR11 suggested a 10-fold increase of the diffusivity. In this work, we suggest that, since the mesoscale diffusivity is but one component of a much large mesoscale parameterization, one should first assess the latter’s overall performance followed by an assessment of the predicted Antarctic Circumpolar Current (ACC) subduction. We employ the mesoscale model formulated by Canuto et al. in 2018 and 2019 that includes recent theoretical and observational advances and that was assessed against a variety of data, including the output of 17 other OGCMs. The ACC diffusivities compare well to drifter data from Sallée et al., and the ACC subduction rates are in agreement with the data.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: V. M. Canuto, vmcanuto@gmail.com
Save
  • Bates, M., R. Tulloch, J. Marshall, and R. Ferrari, 2014: Rationalizing the spatial distribution of mesoscale eddy diffusivity in terms of mixing length theory. J. Phys. Oceanogr., 44, 15231540, https://doi.org/10.1175/JPO-D-13-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckingham, C. E., Z. Khaleel, A. Lazar, A. P. Martin, J. T. Allen, A. C. Naveira Garabato, A. F. Thompson, and C. Vic, 2017: Testing Munk’s hypothesis for sub-mesoscale eddy generation using observations in the North Atlantic. J. Geophys. Res. Oceans, 122, 67256745, https://doi.org/10.1002/2017JC012910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., and M. S. Dubovikov, 1996: A dynamical model for turbulence. General Formalism. Phys. Fluids, 8, 571586, https://doi.org/10.1063/1.868842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., and M. S. Dubovikov, 2005: Modeling mesoscale eddies. Ocean Modell., 8, 130, https://doi.org/10.1016/j.ocemod.2003.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., and M. S. Dubovikov, 2011: Comparison of four mixed layer mesoscale parameterizations and the equations for an arbitrary tracer. Ocean Modell., 39, 2002007, https://doi.org/10.1016/j.ocemod.2011.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., Y. Cheng, M. S. Dubovikov, A. M. Howard, and A. Leboissetier, 2018a: Parameterization of mixed layer and deep-ocean mesoscales including nonlinearity. J. Phys. Oceanogr., 48, 555572, https://doi.org/10.1175/JPO-D-16-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., Y. Cheng, and A. M. Howard, 2018b: Subduction by submesoscales. J. Geophys. Res. Oceans, 123, 86888700, https://doi.org/10.1029/2018JC014142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., Y. Cheng, A. M. Howard, and M. S. Dubovikov, 2019: Three-dimensional, space-dependent mesoscale diffusivity: Derivation and implications. J. Phys. Oceanogr., 49, 10551074, https://doi.org/10.1175/JPO-D-18-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/J.POCEAN.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., 1987, Subduction. Dynamics of the Ocean Surface Mixed Layer :Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 181–196, http://www.soest.hawaii.edu/PubServices/1987pdfs/Cushman_Roisin.pdf.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in Coordinated Ocean-Reference Experiment phase II (CORE-II). Part I: Mean states. Ocean Modell., 73, 76107, https://doi.org/10.1016/j.ocemod.2013.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and K. L. Polzin, 2005, Finescale structure of the T–S relation in the eastern North Atlantic. J. Phys. Oceanogr., 35, 14371454, https://doi.org/10.1175/JPO2763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 2016: Effects of Southern Hemisphere wind changes on the meridional overturning circulation. Annu. Rev. Mar. Sci., 8, 7994, https://doi.org/10.1146/annurev-marine-122414-033929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time dependent climate change. Climate Dyn., 16, 501515, https://doi.org/10.1007/s003820000059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell., 26, 146, https://doi.org/10.1016/j.ocemod.2008.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., S. M. Griffies, and B. L. Samuels, 2007: Effects in a climate model of slope tapering in neutral physics schemes. Ocean Modell., 16, 116, https://doi.org/10.1016/j.ocemod.2006.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiraike, Y., Y. Tanaka, and H. Hasumi, 2016: Subduction of Pacific Antarctic Intermediate Water in an eddy-resolving model. J. Geophys. Res. Oceans, 121, 133147, https://doi.org/10.1002/2015JC010802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., and D. Marshall, 2014: Advection of baroclinic eddies by depth mean flow. Geophys. Res. Lett., 41, 35173521, https://doi.org/10.1002/2014GL060001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., G. A. Schmidt, D. G. Martinson, D. Rind, G. L. Russell and X. Yuan 2003, Sensitivity of sea ice to physical parameterizations in the GISS global climate model. J. Geophys. Res., 108, 3053, https://doi.org/10.1029/2001JC001167.

    • Search Google Scholar
    • Export Citation
  • Luneva, M. V., C. A. Clayson, and M. S. Dubovikov, 2015: Effects of mesoscale eddies in an active mixed layer: Test of the parameterization in eddy resolving simulations. Geophys. Astrophys. Fluid Dyn., https://doi.org/10.1080/03091929.2015.1041023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, D., 1997: Subduction of water masses in an eddying ocean. J. Mar. Res., 55, 201222, https://doi.org/10.1357/0022240973224373.

  • Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state estimate (SOSE). J. Phys. Oceanogr., 40, 880889, https://doi.org/10.1175/2009JPO4236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Ozgokmen, A. Haza, and M. Veneziani, 2013: Seasonality of submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, https://doi.org/10.1007/s10236-013-0633-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramachandran, S., A. Tandon, and A. Mahadevan, 2014: Enhancement in vertical fluxes at a front by mesoscale-submesoscale coupling. J. Geophys. Res. Oceans, 119, 84958511, https://doi.org/10.1002/2014JC010211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, G. L., J. R. Miller, and D. H. Rind, 1995: A coupled atmosphere-ocean model for transient climate change. Atmos.–Ocean, 33, 683730, https://doi.org/10.1080/07055900.1995.9649550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, G. L., J. R. Miller, D. H. Rind, R. A. Ruedy, G. A. Schmidt, and S. Sheth, 2000: Comparison of model and observed regional temperature changes during the past 40+ years. J. Geophys. Res., 105, 14 89114 898, https://doi.org/10.1029/2000JD900156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., and S. R. Rintoul, 2011, Parameterization of eddy-induced subduction in the Southern Ocean surface layer. Ocean Modell., 39, 146153, https://doi.org/10.1016/J.OCEMOD.2011.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, R. Morrow, and R. Lumpkin, 2008: An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J. Mar. Res., 66, 441463, https://doi.org/10.1357/002224008787157458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, S. Rintoul, and S. Wijffels, 2010: Southern Ocean thermocline ventilation. J. Phys. Oceanogr., 40, 509529, https://doi.org/10.1175/2009JPO4291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scharffenberg, M. G., and D. Stammer, 2010: Seasonal variations of the geostrophic flow field and of eddy kinetic energy inferred from TOPEX/Poseidon and Jason-1 Tandem Mission Data. J. Geophys. Res., 115, C02008, https://doi.org/10.1029/2008JC005242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, https://doi.org/10.1002/2013MS000265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sloyan, B., and S. Rintoul, 2001: Circulation, renewal and modification of Antarctic Mode Water and Intermediate Water. J. Phys. Oceanogr., 31, 10051030, https://doi.org/10.1175/1520-0485(2001)031<1005:CRAMOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veneziani, M., A. Griffa, Z. Garrafo, and J. A. Mensa, 2014: Barrier layers in the tropical South Atlantic: Mean dynamics and sub-mesoscale effects. J. Phys. Oceanogr., 44, 265288, https://doi.org/10.1175/JPO-D-13-064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402, https://doi.org/10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WOCE, 2002: WOCE Global Data, version 3.0. WOCE Rep. 180/02, WOCE International Project Office, https://www.nodc.noaa.gov/woce/woce_v3/wocedata_1/diu/welcome.htm.

  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys.Oceanogr., 27, 17701794, https://doi.org/10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 293 81 2
PDF Downloads 211 31 0