Wind–Wave Misalignment Effects on Langmuir Turbulence in Tropical Cyclone Conditions

Dong Wang University of Delaware, Newark, Delaware

Search for other papers by Dong Wang in
Current site
Google Scholar
PubMed
Close
,
Tobias Kukulka University of Delaware, Newark, Delaware

Search for other papers by Tobias Kukulka in
Current site
Google Scholar
PubMed
Close
,
Brandon G. Reichl Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Brandon G. Reichl in
Current site
Google Scholar
PubMed
Close
,
Tetsu Hara University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Tetsu Hara in
Current site
Google Scholar
PubMed
Close
, and
Isaac Ginis University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Isaac Ginis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study utilizes a large-eddy simulation (LES) approach to systematically assess the directional variability of wave-driven Langmuir turbulence (LT) in the ocean surface boundary layer (OSBL) under tropical cyclones (TCs). The Stokes drift vector, which drives LT through the Craik–Leibovich vortex force, is obtained through spectral wave simulations. LT’s direction is identified by horizontally elongated turbulent structures and objectively determined from horizontal autocorrelations of vertical velocities. In spite of a TC’s complex forcing with great wind and wave misalignments, this study finds that LT is approximately aligned with the wind. This is because the Reynolds stress and the depth-averaged Lagrangian shear (Eulerian plus Stokes drift shear) that are key in determining the LT intensity (determined by normalized depth-averaged vertical velocity variances) and direction are also approximately aligned with the wind relatively close to the surface. A scaling analysis of the momentum budget suggests that the Reynolds stress is approximately constant over a near-surface layer with predominant production of turbulent kinetic energy by Stokes drift shear, which is confirmed from the LES results. In this layer, Stokes drift shear, which dominates the Lagrangian shear, is aligned with the wind because of relatively short, wind-driven waves. On the contrary, Stokes drift exhibits considerable amount of misalignments with the wind. This wind–wave misalignment reduces LT intensity, consistent with a simple turbulent kinetic energy model. Our analysis shows that both the Reynolds stress and LT are aligned with the wind for different reasons: the former is dictated by the momentum budget, while the latter is controlled by wind-forced waves.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dong Wang, dongwang@udel.edu

Abstract

This study utilizes a large-eddy simulation (LES) approach to systematically assess the directional variability of wave-driven Langmuir turbulence (LT) in the ocean surface boundary layer (OSBL) under tropical cyclones (TCs). The Stokes drift vector, which drives LT through the Craik–Leibovich vortex force, is obtained through spectral wave simulations. LT’s direction is identified by horizontally elongated turbulent structures and objectively determined from horizontal autocorrelations of vertical velocities. In spite of a TC’s complex forcing with great wind and wave misalignments, this study finds that LT is approximately aligned with the wind. This is because the Reynolds stress and the depth-averaged Lagrangian shear (Eulerian plus Stokes drift shear) that are key in determining the LT intensity (determined by normalized depth-averaged vertical velocity variances) and direction are also approximately aligned with the wind relatively close to the surface. A scaling analysis of the momentum budget suggests that the Reynolds stress is approximately constant over a near-surface layer with predominant production of turbulent kinetic energy by Stokes drift shear, which is confirmed from the LES results. In this layer, Stokes drift shear, which dominates the Lagrangian shear, is aligned with the wind because of relatively short, wind-driven waves. On the contrary, Stokes drift exhibits considerable amount of misalignments with the wind. This wind–wave misalignment reduces LT intensity, consistent with a simple turbulent kinetic energy model. Our analysis shows that both the Reynolds stress and LT are aligned with the wind for different reasons: the former is dictated by the momentum budget, while the latter is controlled by wind-forced waves.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dong Wang, dongwang@udel.edu
Save
  • Craig, P. D., and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 25462559, https://doi.org/10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, https://doi.org/10.1017/S0022112076001420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, Y., I. Ginis, T. Hara, C. W. Wright, and E. J. Walsh, 2009: Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. J. Phys. Oceanogr., 39, 20972116, https://doi.org/10.1175/2009JPO4224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., and R. A. Weller, 1995: Structure and instability of the Ekman spiral in the presence of surface gravity waves .J. Phys. Oceanogr., 25, 31483171, https://doi.org/10.1175/1520-0485(1995)025<3148:SAIOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 18711887, https://doi.org/10.1175/2009JPO4119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562, https://doi.org/10.1175/2007JPO3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1980: An analytical model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 2008: A revised hurricane pressure–wind model. Mon. Wea. Rev., 136, 34323445, https://doi.org/10.1175/2008MWR2395.1.

  • Holm, D. D., 1996: The ideal Craik-Leibovich equations. Physica D, 98, 415441, https://doi.org/10.1016/0167-2789(96)00105-4.

  • Kenyon, K. E., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74, 69916994, https://doi.org/10.1029/JC074i028p06991.

  • Kukulka, T., and K. Brunner, 2015: Passive buoyant tracers in the ocean surface boundary layer: 1. Influence of equilibrium windwaves on vertical distributions. J. Geophys. Res. Oceans, 120, 38373858, https://doi.org/10.1002/2014JC010487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., and R. R. Harcourt, 2017: Influence of Stokes drift decay scale on Langmuir turbulence. J. Phys. Oceanogr., 47, 16371656, https://doi.org/10.1175/JPO-D-16-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2010: Rapid mixed layer deepening by the combination of Langmuir and shear instabilities: A case study. J. Phys. Oceanogr., 40, 23812400, https://doi.org/10.1175/2010JPO4403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, and P. P. Sullivan, 2012: Nonlocal transport due to Langmuir circulation in a coastal ocean. J. Geophys. Res., 117, C12007, https://doi.org/10.1029/2012JC008340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., R. L. Jenkins, J. T. Kirby, F. Shi, and R. W. Scarborough, 2017: Surface wave dynamics in Delaware Bay and its adjacent coastal shelf. J. Geophys. Res. Oceans, 122, 86838706, https://doi.org/10.1002/2017JC013370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech., 15, 391427, https://doi.org/10.1146/annurev.fl.15.010183.002135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res. I, 52, 259278, https://doi.org/10.1016/j.dsr.2004.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull., 6, 225237, https://doi.org/10.1016/S1353-2561(01)00041-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 17931816, https://doi.org/10.1175/JPO-D-12-07.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J. Liang, and P. P. Sullivan, 2014: Langmuir turbulence in swell. J. Phys. Oceanogr., 44, 870890, https://doi.org/10.1175/JPO-D-13-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., H. S. Min, and S. Raasch, 2004: Large eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34, 720735, https://doi.org/10.1175/1520-0485(2004)034<0720:LESOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polton, J. A., and S. E. Belcher, 2007: Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res., 112, C09020, https://doi.org/10.1029/2007JC004205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polton, J. A., Y.-D. Lenn, S. Elipot, T. K. Chereskin, and J. Sprintall, 2013: Can Drake Passage observations match Ekman’s classic theory? J. Phys. Oceanogr., 43, 17331740, https://doi.org/10.1175/JPO-D-13-034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2010: Turbulent Flows. 1st ed. Cambridge University Press, 93 pp.

  • Portilla, J., F. J. Ocampo-Torres, and J. Monbaliu, 2009: Spectral partitioning and identification of wind sea and swell. J. Atmos. Oceanic Technol., 26, 107122, https://doi.org/10.1175/2008JTECHO609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. R. Schudlich, 1987: Wind-driven ocean currents and Ekman transport. Science, 238, 15341538, https://doi.org/10.1126/science.238.4833.1534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabe, T. J., T. Kukulka, I. Ginis, T. Hara, B. G. Reichl, E. A. D’Asaro, R. R. Harcourt, and P. P. Sullivan, 2015: Langmuir turbulence under Hurricane Gustav (2008). J. Phys. Oceanogr., 45, 657677, https://doi.org/10.1175/JPO-D-14-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., I. Ginis, T. Hara, B. Thomas, T. Kukulka, and D. Wang, 2016a: Impact of sea-state-dependent Langmuir turbulence on the ocean response to a tropical cyclone. Mon. Wea. Rev., 144, 45694590, https://doi.org/10.1175/MWR-D-16-0074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichl, B. G., D. Wang, T. Hara, I. Ginis, and T. Kukulka, 2016b: Langmuir turbulence parameterization in tropical cyclone conditions. J. Phys. Oceanogr., 46, 863886, https://doi.org/10.1175/JPO-D-15-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinha, N., E. T.-M. Andres, and C. M. Akan, 2015: Toward a K-profile parameterization of Langmuir turbulence in shallow coastal shelves. J. Phys. Oceanogr., 45, 28692895, https://doi.org/10.1175/JPO-D-14-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 85018522, https://doi.org/10.1029/94JC03202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., E. D. Skyllingstad, G. B. Crawford, and H. Wijesekera, 2002: Nonlocal fluxes and Stokes drift effects in the K-profile parameterization. Ocean Dyn., 52, 104115, https://doi.org/10.1007/s10236-002-0012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452, https://doi.org/10.1017/S002211200700897X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., L. Romero, J. C. McWilliams, and W. K. Melville, 2012: Transient evolution of Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves. J. Phys. Oceanogr., 42, 19591980, https://doi.org/10.1175/JPO-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams, P. A. Hwang, and S. A. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, https://doi.org/10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH III version 3.14. NOAA/NWS/NCEP/MMAB Tech. Note 276, 194 pp., http://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf.

  • Van Roekel, L. P., B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, https://doi.org/10.1029/2011JC007516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., T. Kukulka, B. G. Reichl, T. Hara, I. Ginis, and P. P. Sullivan, 2018: Interaction of Langmuir turbulence and inertial currents in the ocean surface boundary layer under tropical cyclones. J. Phys. Oceanogr., 48, 19211940, https://doi.org/10.1175/JPO-D-17-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 599 166 10
PDF Downloads 563 129 8