Small-Scale Dispersion in the Presence of Langmuir Circulation

Henry Chang School of Marine Science and Policy, University of Delaware, Newark, Delaware

Search for other papers by Henry Chang in
Current site
Google Scholar
PubMed
Close
,
Helga S. Huntley School of Marine Science and Policy, University of Delaware, Newark, Delaware

Search for other papers by Helga S. Huntley in
Current site
Google Scholar
PubMed
Close
,
A. D. Kirwan Jr. School of Marine Science and Policy, University of Delaware, Newark, Delaware

Search for other papers by A. D. Kirwan Jr. in
Current site
Google Scholar
PubMed
Close
,
Daniel F. Carlson Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida
Arctic Research Centre, Department of Bioscience, Aarhus University, Aarhus, Denmark

Search for other papers by Daniel F. Carlson in
Current site
Google Scholar
PubMed
Close
,
Jean A. Mensa Department of Geology and Geophysics, Yale University, New Haven, Connecticut

Search for other papers by Jean A. Mensa in
Current site
Google Scholar
PubMed
Close
,
Sanchit Mehta Ocean Sciences Department, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Sanchit Mehta in
Current site
Google Scholar
PubMed
Close
,
Guillaume Novelli Ocean Sciences Department, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Guillaume Novelli in
Current site
Google Scholar
PubMed
Close
,
Tamay M. Özgökmen Ocean Sciences Department, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Tamay M. Özgökmen in
Current site
Google Scholar
PubMed
Close
,
Baylor Fox-Kemper Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island

Search for other papers by Baylor Fox-Kemper in
Current site
Google Scholar
PubMed
Close
,
Brodie Pearson Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island

Search for other papers by Brodie Pearson in
Current site
Google Scholar
PubMed
Close
,
Jenna Pearson Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island

Search for other papers by Jenna Pearson in
Current site
Google Scholar
PubMed
Close
,
Ramsey R. Harcourt Department of Ocean Physics, and Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Ramsey R. Harcourt in
Current site
Google Scholar
PubMed
Close
, and
Andrew C. Poje Department of Mathematics, City University of New York, Staten Island, New York

Search for other papers by Andrew C. Poje in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We present an analysis of ocean surface dispersion characteristics, on 1–100-m scales, obtained by optically tracking a release of O(600) bamboo plates for 2 h in the northern Gulf of Mexico. Under sustained 5–6 m s−1 winds, energetic Langmuir cells are clearly delineated in the spatially dense plate observations. Within 10 min of release, the plates collect in windrows with 15-m spacing aligned with the wind. Windrow spacing grows, through windrow merger, to 40 m after 20 min and then expands at a slower rate to 50 m. The presence of Langmuir cells produces strong horizontal anisotropy and scale dependence in all surface dispersion statistics computed from the plate observations. Relative dispersion in the crosswind direction initially dominates but eventually saturates, while downwind dispersion exhibits continual growth consistent with contributions from both turbulent fluctuations and organized mean shear. Longitudinal velocity differences in the crosswind direction indicate mean convergence at scales below the Langmuir cell diameter and mean divergence at larger scales. Although the second-order structure function measured by contemporaneous GPS-tracked surface drifters drogued at ~0.5 m shows persistent r2/3 power law scaling down to 100–200-m separation scales, the second-order structure function for the very near surface plates observations has considerably higher energy and significantly shallower slope at scales below 100 m. This is consistent with contemporaneous data from undrogued surface drifters and previously published model results indicating shallowing spectra in the presence of direct wind-wave forcing mechanisms.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-19-0107.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Henry Chang, changhenry@gmail.com

Abstract

We present an analysis of ocean surface dispersion characteristics, on 1–100-m scales, obtained by optically tracking a release of O(600) bamboo plates for 2 h in the northern Gulf of Mexico. Under sustained 5–6 m s−1 winds, energetic Langmuir cells are clearly delineated in the spatially dense plate observations. Within 10 min of release, the plates collect in windrows with 15-m spacing aligned with the wind. Windrow spacing grows, through windrow merger, to 40 m after 20 min and then expands at a slower rate to 50 m. The presence of Langmuir cells produces strong horizontal anisotropy and scale dependence in all surface dispersion statistics computed from the plate observations. Relative dispersion in the crosswind direction initially dominates but eventually saturates, while downwind dispersion exhibits continual growth consistent with contributions from both turbulent fluctuations and organized mean shear. Longitudinal velocity differences in the crosswind direction indicate mean convergence at scales below the Langmuir cell diameter and mean divergence at larger scales. Although the second-order structure function measured by contemporaneous GPS-tracked surface drifters drogued at ~0.5 m shows persistent r2/3 power law scaling down to 100–200-m separation scales, the second-order structure function for the very near surface plates observations has considerably higher energy and significantly shallower slope at scales below 100 m. This is consistent with contemporaneous data from undrogued surface drifters and previously published model results indicating shallowing spectra in the presence of direct wind-wave forcing mechanisms.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-19-0107.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Henry Chang, changhenry@gmail.com
Save
  • Anikiev, V., O. Zaytsev, T. Zaytseva, and V. Yabosh, 1985: Experimental investigation of the diffusion parameters in the ocean. Izv. Atmos. Ocean. Phys., 21, 931934.

    • Search Google Scholar
    • Export Citation
  • Balwada, D., J. H. LaCasce, and K. G. Speer, 2016a: Scale-dependent distribution of kinetic energy from surface drifters in the Gulf of Mexico. Geophys. Res. Lett., 43, 10 85610 863, https://doi.org/10.1002/2016GL069405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balwada, D., K. G. Speer, J. H. LaCasce, W. B. Owens, J. Marshall, and R. Ferrari, 2016b: Circulation and stirring in the southeast Pacific Ocean and the Scotia Sea sectors of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 46, 20052027, https://doi.org/10.1175/JPO-D-15-0207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., and J. H. LaCasce, 2016: Statistics of simulated and observed pair separations in the Gulf of Mexico. J. Phys. Oceanogr., 46, 21832199, https://doi.org/10.1175/JPO-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, D. F., and Coauthors, 2018: Surface ocean dispersion observations from the ship-tethered aerostat remote sensing system. Front. Mar. Sci., 5, 479, https://doi.org/10.3389/fmars.2018.00479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and Coauthors, 2018: Ocean convergence and the dispersion of flotsam. Proc. Natl. Acad. Sci. USA, 115, 11621167, https://doi.org/10.1073/pnas.1718453115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1985: Drifter observations of coastal surface currents during CODE: The statistical and dynamical views. J. Geophys. Res., 90, 47564772, https://doi.org/10.1029/JC090iC03p04756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, P. E., L. P. Van Roekel, B. Fox-Kemper, K. Julien, and G. P. Chini, 2014: Langmuir submesoscale interactions: Descriptive analysis of multiscale frontal spindown simulations. J. Phys. Oceanogr., 44, 22492272, https://doi.org/10.1175/JPO-D-13-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562, https://doi.org/10.1175/2007JPO3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haza, A. C., T. M. Özgökmen, A. Griffa, A. C. Poje, and M.-P. Lelong, 2014: How does drifter position uncertainty affect ocean dispersion estimates? J. Atmos. Oceanic Technol., 31, 28092828, https://doi.org/10.1175/JTECH-D-14-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haza, A. C., and Coauthors, 2018: Drogue-loss detection for surface drifters during the Lagrangian Submesoscale Experiment (LASER). J. Atmos. Oceanic Technol., 35, 705725, https://doi.org/10.1175/JTECH-D-17-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kannala, J., J. Heikkilä, and S. S. Brandt, 2008: Geometric camera calibration. Wiley Encyclopedia of Computer Science and Engineering, B. W. Wah, Ed., Wiley, 1–11, https://doi.org/10.1002/9780470050118.ecse589.

    • Crossref
    • Export Citation
  • Kenyon, K. E., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74, 69916994, https://doi.org/10.1029/JC074i028p06991.

  • Kirwan, A. D., Jr., G. J. McNally, E. Reyna, and W. J. Merrell Jr., 1978: The near-surface circulation of the eastern North Pacific. J. Phys. Oceanogr., 8, 937945, https://doi.org/10.1175/1520-0485(1978)008<0937:TNSCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941a: Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32, 1618.

  • Kolmogorov, A. N., 1941b: The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR, 30, 913.

    • Search Google Scholar
    • Export Citation
  • Koszalka, I. M., J. H. LaCasce, and K. A. Orvik, 2009: Relative dispersion in the Nordic Seas. J. Mar. Res., 67, 411433, https://doi.org/10.1357/002224009790741102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 14171423, https://doi.org/10.1063/1.1762301.

  • Kukulka, T., and R. R. Harcourt, 2017: Influence of Stokes drift decay scale on Langmuir turbulence. J. Phys. Oceanogr., 47, 16371656, https://doi.org/10.1175/JPO-D-16-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2009: Significance of Langmuir circulation in upper ocean mixing: Comparison of observations and simulations. Geophys. Res. Lett., 36, L10603, https://doi.org/10.1029/2009GL037620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2019: A unified model spectrum for anisotropic stratified and isotropic turbulence in the ocean and atmosphere. J. Phys. Oceanogr., 49, 385407, https://doi.org/10.1175/JPO-D-18-0092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 129, https://doi.org/10.1016/j.pocean.2008.02.002.

  • LaCasce, J. H., and A. Bower, 2000: Relative dispersion in the subsurface North Atlantic. J. Mar. Res., 58, 863894, https://doi.org/10.1357/002224000763485737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and J. C. Ohlmann, 2003: Relative dispersion at the surface of the Gulf of Mexico. J. Mar. Res., 61, 285312, https://doi.org/10.1357/002224003322201205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., R. Ferrari, J. Marshall, R. Tulloch, D. Balwada, and K. Speer, 2014: Float-derived isopycnal diffusivities in the dimes experiment. J. Phys. Oceanogr., 44, 764780, https://doi.org/10.1175/JPO-D-13-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacorata, G., E. Aurell, and A. Vulpiani, 2001: Drifter dispersion in the Adriatic Sea: Lagrangian data and chaotic model. Ann. Geophys., 19, 121129, https://doi.org/10.5194/angeo-19-121-2001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langmuir, I., 1938: Surface motion of water induced by wind. Science, 87, 119123, https://doi.org/10.1126/science.87.2250.119.

  • Ledwell, J. R., R. He, Z. Xue, S. F. DiMarco, L. J. Spencer, and P. Chapman, 2016: Dispersion of a tracer in the deep Gulf of Mexico. J. Geophys. Res. Oceans, 121, 11101132, https://doi.org/10.1002/2015JC011405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech., 15, 391427, https://doi.org/10.1146/annurev.fl.15.010183.002135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., 2000: Estimating horizontal dispersion of floating particles in wind-driven upper ocean. Spill Sci. Technol. Bull., 6, 255261, https://doi.org/10.1016/S1353-2561(01)00044-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and S. Elipot, 2010: Surface drifter pair spreading in the North Atlantic. J. Geophys. Res., 115, C12017, https://doi.org/10.1029/2010JC006338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., T. Özgökmen, and L. Centurioni, 2017: Advances in the application of surface drifters. Annu. Rev. Mar. Sci., 9, 5981, https://doi.org/10.1146/annurev-marine-010816-060641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantovanelli, A., M. L. Heron, S. F. Heron, and C. R. Steinberg, 2012: Relative dispersion of surface drifters in a barrier reef region. J. Geophys. Res., 117, C11016, https://doi.org/10.1029/2012JC008106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc. London, 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and P. P. Sullivan, 2000: Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull., 6, 225237, https://doi.org/10.1016/S1353-2561(01)00041-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mensa, J. A., M.-L. Timmermans, I. E. Kozlov, W. J. Williams, and T. M. Özgökmen, 2018: Surface drifter observations from the Arctic Ocean’s Beaufort Sea: Evidence for submesoscale dynamics. J. Geophys. Res. Oceans, 123, 26352645, https://doi.org/10.1002/2017JC013728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mostafa, M. M. R., and K. P. Schwarz, 2001: Digital image georeferencing from a multiple camera system by GPS/INS. ISPRS J. Photogramm. Remote Sens., 56, 112, https://doi.org/10.1016/S0924-2716(01)00030-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novelli, G., C. M. Guigand, C. Cousin, E. H. Ryan, N. J. M. Laxague, H. Dai, B. K. Haus, and T. M. Özgökmen, 2017: A biodegradable surface drifter for ocean sampling on a massive scale. J. Atmos. Oceanic Technol., 34, 25092532, https://doi.org/10.1175/JTECH-D-17-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1971: Oceanic diffusion diagrams. Deep-Sea Res. Oceanogr. Abstr., 18, 789802, https://doi.org/10.1016/0011-7471(71)90046-5.

  • Ollitrault, M., C. Gabillet, and A. C. De Verdière, 2005: Open ocean regimes of relative dispersion. J. Fluid Mech., 533, 381407, https://doi.org/10.1017/S0022112005004556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, J., B. Fox-Kemper, R. Barkan, J. Choi, A. Bracco, and J. C. McWilliams, 2019: Impacts of convergence on structure functions from surface drifters in the Gulf of Mexico. J. Phys. Oceanogr., 49, 675690, https://doi.org/10.1175/JPO-D-18-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., and Coauthors, 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, https://doi.org/10.1073/pnas.1402452111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., T. M. Özgökmen, D. J. Bogucki, and A. D. Kirwan Jr., 2017: Evidence of a forward energy cascade and Kolmogorov self-similarity in submesoscale ocean surface drifter observations. Phys. Fluids, 29, 020701, https://doi.org/10.1063/1.4974331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porter, M., M. E. Inall, J. A. M. Green, J. H. Simpson, A. C. Dale, and P. I. Miller, 2016: Drifter observations in the summer time Bay of Biscay slope current. J. Mar. Syst., 157, 6574, https://doi.org/10.1016/j.jmarsys.2016.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roach, C. J., D. Balwada, and K. Speer, 2018: Global observations of horizontal mixing from argo float and surface drifter trajectories. J. Geophys. Res. Oceans, 123, 45604575, https://doi.org/10.1029/2018JC013750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rypina, I. I., A. Kirincich, S. Lentz, and M. Sundermeyer, 2016: Investigating the eddy diffusivity concept in the coastal ocean. J. Phys. Oceanogr., 46, 22012218, https://doi.org/10.1175/JPO-D-16-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schroeder, K., and Coauthors, 2012: Targeted Lagrangian sampling of submesoscale dispersion at a coastal frontal zone. Geophys. Res. Lett., 39, L11608, https://doi.org/10.1029/2012GL051879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, K., W. Anderson, and J. Kuehl, 2018: Langmuir turbulence in coastal zones: Structure and length scales. J. Phys. Oceanogr., 48, 10891115, https://doi.org/10.1175/JPO-D-17-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. J., 1971: Some data on the distance-neighbour function for relative diffusion. J. Fluid Mech., 47, 601607, https://doi.org/10.1017/S0022112071001253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takewaka, S., S. Misaki, and T. Nakamura, 2003: Dye diffusion experiment in a longshore current field. Coast. Eng. J., 45, 471487, https://doi.org/10.1142/S0578563403000841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, J., E. A. D’Asaro, M. F. Cronin, W. E. Rogers, R. R. Harcourt, and A. Shcherbina, 2013: Waves and the equilibrium range at Ocean Weather Station P. J. Geophys. Res. Oceans, 118, 59515962, https://doi.org/10.1002/2013JC008837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, J., J. B. Girton, R. Jha, and A. Trapani, 2018: Measurements of directional wave spectra and wind stress from a wave glider autonomous surface vehicle. J. Atmos. Oceanic Technol., 35, 347363, https://doi.org/10.1175/JTECH-D-17-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2004: Langmuir circulation. Annu. Rev. Fluid Mech., 36, 5579, https://doi.org/10.1146/annurev.fluid.36.052203.071431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., M. S. Cure, A. Graham, and A. J. Hall, 1994: Sonar observations of Langmuir circulation and estimation of dispersion of floating particles. J. Atmos. Oceanic Technol., 11, 12731294, https://doi.org/10.1175/1520-0426(1994)011<1273:SOOLCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torsvik, T., and J. Kalda, 2014: Analysis of surface current properties in the Gulf of Finland using data from surface drifters. 2014 IEEE/OES Baltic Int. Symp., Tallinn, Estonia, IEEE, 1–9, https://doi.org/10.1109/BALTIC.2014.6887845.

    • Crossref
    • Export Citation
  • Watson, A. J., and J. R. Ledwell, 2000: Oceanographic tracer release experiments using sulphur hexafluoride. J. Geophys. Res., 105, 14 32514 337, https://doi.org/10.1029/1999JC900272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watson, A. J., J. R. Ledwell, M.-J. Messias, B. A. King, N. Mackay, M. P. Meredith, B. Mills, and A. C. N. Garabato, 2013: Rapid cross-density ocean mixing at mid-depths in the Drake Passage measured by tracer release. Nature, 501, 408411, https://doi.org/10.1038/nature12432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., B. Chen, M. Chamecki, and C. Meneveau, 2015: Oil plumes and dispersion in Langmuir, upper-ocean turbulence: Large-eddy simulations and K-profile parameterization. J. Geophys. Res. Oceans, 120, 47294759, https://doi.org/10.1002/2014JC010542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1999: Wind Generated Ocean Waves. Elsevier, 288 pp.

  • Zavala Sansón, L., P. Pérez-Brunius, and J. Sheinbaum, 2017: Surface relative dispersion in the southwestern Gulf of Mexico. J. Phys. Oceanogr., 47, 387403, https://doi.org/10.1175/JPO-D-16-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhurbas, V., and I. S. Oh, 2004: Drifter-derived maps of lateral diffusivity in the Pacific and Atlantic Oceans in relation to surface circulation patterns. J. Geophys. Res., 109, C05015, https://doi.org/10.1029/2003JC002241.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1450 538 186
PDF Downloads 894 179 8