Lagrangian Measurement of Steep Directionally Spread Ocean Waves: Second-Order Motion of a Wave-Following Measurement Buoy

M. L. McAllister Department of Engineering Science, University of Oxford, Oxford, United Kingdom

Search for other papers by M. L. McAllister in
Current site
Google Scholar
PubMed
Close
and
T. S. van den Bremer Department of Engineering Science, University of Oxford, Oxford, United Kingdom

Search for other papers by T. S. van den Bremer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The notion that wave-following buoys provide less accurate measurements of extreme waves than their Eulerian counterparts is a perception commonly held by oceanographers and engineers (Forristall 2000, J. Phys. Oceanogr., 30, 1931–1943, https://doi.org/10.1175/1520-0485(2000)030<1931:WCDOAS>2.0.CO;2). By performing a direct comparison between the two types of measurement under laboratory conditions, we examine one of the hypotheses underlying this perception and establish whether wave measurement buoys in extreme ocean waves correctly follow steep crests and behave in a purely Lagrangian manner. We present a direct comparison between Eulerian gauge and Lagrangian buoy measurements of steep directionally spread and crossing wave groups on deep water. Our experimental measurements are compared with exact (Herbers and Janssen 2016, J. Phys. Oceanogr., 46, 1009–1021, https://doi.org/10.1175/JPO-D-15-0129.1) and new approximate expressions for Lagrangian second-order theory derived herein. We derive simple closed-form expressions for the second-order contribution to crest height representative of extreme ocean waves—namely, for a single narrowly spread wave group, two narrowly spread crossing wave groups, and a single strongly spread wave group. In the limit of large spreading or head-on crossing, Eulerian and Lagrangian measurements become equivalent. For the range of conditions that we test, we find that our buoy behaves in a Lagrangian manner, and our experimental observations compare extremely well to predictions made using second-order theory. In general, Eulerian and Lagrangian measurements of crest height are not significantly different for all degrees of directional spreading and crossing. However, second-order bound-wave energy is redistributed from superharmonics in Eulerian measurements to subharmonics in Lagrangian measurement, which affects the “apparent” steepness inferred from time histories and poses a potential issue for wave buoys that measure acceleration.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. L. McAllister, mark.mcallister@eng.ox.ac.uk

Abstract

The notion that wave-following buoys provide less accurate measurements of extreme waves than their Eulerian counterparts is a perception commonly held by oceanographers and engineers (Forristall 2000, J. Phys. Oceanogr., 30, 1931–1943, https://doi.org/10.1175/1520-0485(2000)030<1931:WCDOAS>2.0.CO;2). By performing a direct comparison between the two types of measurement under laboratory conditions, we examine one of the hypotheses underlying this perception and establish whether wave measurement buoys in extreme ocean waves correctly follow steep crests and behave in a purely Lagrangian manner. We present a direct comparison between Eulerian gauge and Lagrangian buoy measurements of steep directionally spread and crossing wave groups on deep water. Our experimental measurements are compared with exact (Herbers and Janssen 2016, J. Phys. Oceanogr., 46, 1009–1021, https://doi.org/10.1175/JPO-D-15-0129.1) and new approximate expressions for Lagrangian second-order theory derived herein. We derive simple closed-form expressions for the second-order contribution to crest height representative of extreme ocean waves—namely, for a single narrowly spread wave group, two narrowly spread crossing wave groups, and a single strongly spread wave group. In the limit of large spreading or head-on crossing, Eulerian and Lagrangian measurements become equivalent. For the range of conditions that we test, we find that our buoy behaves in a Lagrangian manner, and our experimental observations compare extremely well to predictions made using second-order theory. In general, Eulerian and Lagrangian measurements of crest height are not significantly different for all degrees of directional spreading and crossing. However, second-order bound-wave energy is redistributed from superharmonics in Eulerian measurements to subharmonics in Lagrangian measurement, which affects the “apparent” steepness inferred from time histories and poses a potential issue for wave buoys that measure acceleration.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. L. McAllister, mark.mcallister@eng.ox.ac.uk
Save
  • Allender, J., and Coauthors, 1989: The WADIC project: A comprehensive field evaluation of directional wave instrumentation. Ocean Eng., 16, 505536, https://doi.org/10.1016/0029-8018(89)90050-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashton, I. G. C., and L. Johanning, 2015: On errors in low frequency wave measurements from wave buoys. Ocean Eng., 95, 1122, https://doi.org/10.1016/j.oceaneng.2014.11.033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benetazzo, A., and Coauthors, 2017: On the shape and likelihood of oceanic rogue waves. Sci. Rep., 7, 8276, https://doi.org/10.1038/s41598-017-07704-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bidlot, J., D. J. Holmes, P. A. Wittmann, R. Lalbeharry, and H. S. Chen, 2002: Intercomparison of the performance of operational ocean wave forecasting systems with buoy data. Wea. Forecasting, 17, 287310, https://doi.org/10.1175/1520-0434(2002)017<0287:IOTPOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccotti, P., 1983: Some new results on statistical properties of wind waves. Appl. Ocean Res., 5, 134140, https://doi.org/10.1016/0141-1187(83)90067-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christou, M., P. Tromans, L. Vanderschuren, and K. Ewans, 2009: Second-order crest statistics of realistic sea states. Proc. 11th Int. Workshop on Wave Hindcasting and Forecasting, Halifax, NS, Canada, WMO/UNESCO/IOC/JCOMM, 18–23, http://www.waveworkshop.org/11thWaves/Papers/Christou_et_al_second_order_crest_statistics.pdf.

  • Collins, C. O., III, B. Lund, T. Waseda, and H. C. Graber, 2014: On recording sea surface elevation with accelerometer buoys: lessons from ITOP (2010). Ocean Dyn., 64, 895904, https://doi.org/10.1007/s10236-014-0732-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalzell, J. F., 1999: A note on finite depth second-order wave–wave interactions. Appl. Ocean Res., 21, 105111, https://doi.org/10.1016/S0141-1187(99)00008-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dysthe, K. B., and H. E. K. P. Müller, 2008: Oceanic rogue waves. Annu. Rev. Fluid Mech., 40, 287310, https://doi.org/10.1146/annurev.fluid.40.111406.102203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedele, F., and F. Arena, 2010: Long-term statistics and extreme waves of sea storms. J. Phys. Oceanogr., 40, 11061117, https://doi.org/10.1175/2009JPO4335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forristall, G. Z., 2000: Wave crest distributions: Observations and second-order theory. J. Phys. Oceanogr., 30, 19311943, https://doi.org/10.1175/1520-0485(2000)030<1931:WCDOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forristall, G. Z., S. F. Barstow, H. E. Krogstad, M. Prevosto, P. H. Taylor, and P. S. Tromans, 2004: Wave crest sensor intercomparison study: An overview of WACSIS. J. Offshore Mech. Arct., 126, 2634, https://doi.org/10.1115/1.1641388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gemmrich, J., and J. Thomson, 2017: Observations of the shape and group dynamics of rogue waves. Geophys. Res. Lett., 44, 18231830, https://doi.org/10.1002/2016GL072398.

    • Search Google Scholar
    • Export Citation
  • Grue, J., and J. Kolaas, 2019: On the Lagrangian period in steep periodic waves. Water Waves, https://doi.org/10.1007/s42286-019-00004-x, in press.

    • Search Google Scholar
    • Export Citation
  • Guedes Soares, C. G., Z. Cherneva, and E. M. Antao, 2004: Steepness and asymmetry of the largest waves in storm sea states. Ocean Eng., 31, 11471167, https://doi.org/10.1016/j.oceaneng.2003.10.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, D. E., M. Dunckel, and J. A. Ewing, 1980: Directional wave spectra observed during JONSWAP 1973. J. Phys. Oceanogr., 10, 12641280, https://doi.org/10.1175/1520-0485(1980)010<1264:DWSODJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1962: On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. J. Fluid Mech., 12, 481500, https://doi.org/10.1017/S0022112062000373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbers, T. H. C., and T. T. Janssen, 2016: Lagrangian surface wave motion and Stokes drift fluctuations. J. Phys. Oceanogr., 46, 10091021, https://doi.org/10.1175/JPO-D-15-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbers, T. H. C., S. Elgar, and R. T. Guza, 1994: Infragravity-frequency (0.005–0.05 Hz) motions on the shelf. Part I: Forced waves. J. Phys. Oceanogr., 24, 917927, https://doi.org/10.1175/1520-0485(1994)024<0917:IFHMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbers, T. H. C., P. F. Jessen, T. T. Janssen, D. B. Colbert, and J. H. MacMahan, 2012: Observing ocean surface waves with GPS-tracked buoys. J. Atmos. Oceanic Technol., 29, 944959, https://doi.org/10.1175/JTECH-D-11-00128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., and T. H. C. Herbers, 1986: Statistics of breaking waves observed as whitecaps in the open sea. J. Phys. Oceanogr., 16, 290297, https://doi.org/10.1175/1520-0485(1986)016<0290:SOBWOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., B. Hansen, and J. Bidlot, 1997: Verification of the ECMWF wave forecasting system against buoy and altimeter data. Wea. Forecasting, 12, 763784, https://doi.org/10.1175/1520-0434(1997)012<0763:VOTEWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krogstad, H. E., and S. F. Barstow, 2000: A unified approach to extreme value analysis of ocean waves. Tenth Int. Offshore and Polar Engineering Conf., Seattle, WA, International Society of Offshore and Polar Engineers, 6 pp.

  • Lenee-Bluhm, P., R. Paasch, and H. T. Özkan-Haller, 2011: Characterizing the wave energy resource of the US Pacific Northwest. Renew. Energy, 36, 21062119, https://doi.org/10.1016/j.renene.2011.01.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindgren, G., 1970: Some properties of a normal process near a local maximum. Ann. Math. Stat., 41, 18701883, https://doi.org/10.1214/aoms/1177696688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., T. Lewis, Y. Zhang, and W. Sheng, 2015: Performance assessment of wave measurements of wave buoys. Int. J. Mar. Energy, 12, 6376, https://doi.org/10.1016/j.ijome.2015.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1986: Eulerian and Lagrangian aspects of surface waves. J. Fluid Mech., 173, 683707, https://doi.org/10.1017/S0022112086001325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and R. W. Stewart, 1962: Radiation stress and mass transport in gravity waves, with applications to ‘surf beats’. J. Fluid Mech., 13, 481504, https://doi.org/10.1017/S0022112062000877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., and R. W. Stewart, 1964: Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Res., 2, 529562.

    • Search Google Scholar
    • Export Citation
  • Marthinsen, T., and S. R. Winterstein, 1992: On the skewness of random surface waves. Second Int. Offshore and Polar Engineering Conf., San Francisco, CA, International Society of Offshore and Polar Engineers, 7 pp.

  • McAllister, M. L., T. A. A. Adcock, P. H. Taylor, and T. S. van den Bremer, 2018: The set-down and set-up of directionally spread and crossing surface gravity wave groups. J. Fluid Mech., 835, 131169, https://doi.org/10.1017/jfm.2017.774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meylan, M. H., L. J. Yiew, L. G. Bennetts, B. J. French, and G. A. Thomas, 2015: Surge motion of an ice floe in waves: Comparison of a theoretical and an experimental model. Ann. Glaciol., 56, 155159, https://doi.org/10.3189/2015AoG69A646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mork, G., S. Barstow, A. Kabuth, and M. T. Pontes, 2010: Assessing the global wave energy potential. 29th Int. Conf. on Ocean, Offshore and Arctic Engineering, Shanghai, China, American Society of Mechanical Engineers, 447–454, https://doi.org/10.1115/OMAE2010-20473.

    • Crossref
    • Export Citation
  • O’Reilly, W. C., T. H. C. Herbers, R. J. Seymour, and R. T. Guza, 1996: A comparison of directional buoy and fixed platform measurements of Pacific swell. J. Atmos. Oceanic Technol., 13, 231238, https://doi.org/10.1175/1520-0426(1996)013<0231:ACODBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okihiro, M., R. T. Guza, and R. J. Seymour, 1992: Bound infragravity waves. J. Geophys. Res., 97, 11 45311 469, https://doi.org/10.1029/92JC00270.

  • Pellet, L., P. Christodoulides, S. Donne, C. J. Bean, and F. Dias, 2017: Pressure induced by the interaction of water waves with nearly equal frequencies and nearly opposite directions. Theor. Appl. Mech. Lett., 7, 138144, https://doi.org/10.1016/J.TAML.2017.04.002.

    • Search Google Scholar
    • Export Citation
  • Penney, W. G., and A. T. Price, 1952: Part ii. Finite periodic stationary gravity waves in a perfect liquid. Philos. Trans. Roy. Soc. London, 244A, 254284, https://doi.org/10.1098/rsta.1952.0004.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., D. Gu, and M. Donelan, 1993: Expected structure of extreme waves in a Gaussian sea. Part I: Theory and SWADE buoy measurements. J. Phys. Oceanogr., 23, 9921000, https://doi.org/10.1175/1520-0485(1993)023<0992:ESOEWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pizzo, N., W. K. Melville, and L. Deike, 2019: Lagrangian transport by nonbreaking and breaking deep-water waves at the ocean surface. J. Phys. Oceanogr., 49, 983992, https://doi.org/10.1175/JPO-D-18-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pontes, M. T., 1998: Assessing the European wave energy resource. J. Offshore Mech. Arct., 120, 226231, https://doi.org/10.1115/1.2829544.

  • Prevosto, M., H. E. Krogstad, and R. Agnès, 2000: Probability distributions for maximum wave and crest heights. Coast. Eng., 40, 329360, https://doi.org/10.1016/S0378-3839(00)00017-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rademakers, P. J., 1993: Waverider-wavestaff comparison. Ocean Eng., 20, 187193, https://doi.org/10.1016/0029-8018(93)90034-F.

  • Raghukumar, K., G. Chang, F. Spada, C. Jones, T. Janssen, and A. Gans, 2019: Performance characteristics of “Spotter,” a newly developed real-time wave measurement buoy. J. Atmos. Oceanic Technol., 36, 11271141, https://doi.org/10.1175/JTECH-D-18-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayleigh, L., 1915: Deep water waves, progressive or stationary, to the third order of approximation. Proc. Roy. Soc. London, 91A, 345353, https://doi.org/10.1098/rspa.1915.0025.

    • Search Google Scholar
    • Export Citation
  • Santamaria, F., G. Boffetta, M. M. Afonso, A. Mazzino, M. Onorato, and D. Pugliese, 2013: Stokes drift for inertial particles transported by water waves. Europhys. Lett., 102, 14003, https://doi.org/10.1209/0295-5075/102/14003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santo, H., P. H. Taylor, R. Eatock Taylor, and Y. S. Choo, 2013: Average properties of the largest waves in Hurricane Camille. J. Offshore Mech. Arct., 135, 011602, https://doi.org/10.1115/1.4006930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, J. N., and R. G. Dean, 1981: Second-order directional seas and associated wave forces. Soc. Pet. Eng. J., 21, 129140, https://doi.org/10.2118/8584-PA.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srokosz, M. A., and M. S. Longuet-Higgins, 1986: On the skewness of sea-surface elevation. J. Fluid Mech., 164, 487497, https://doi.org/10.1017/S0022112086002653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, G. G., 1847: On the theory of oscillatory waves. Trans. Cambridge Philos. Soc., 8, 441455.

  • Tadjbakhsh, I., and J. B. Keller, 1960: Standing surface waves of finite amplitude. J. Fluid Mech., 8, 442451, https://doi.org/10.1017/S0022112060000724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toffoli, A., M. Onorato, and J. Monbaliu, 2006: Wave statistics in unimodal and bimodal seas from a second-order model. Eur. J. Mech., 25B, 649661, https://doi.org/10.1016/j.euromechflu.2006.01.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toffoli, A., J. Monbaliu, M. Onorato, A. R. Osborne, A. V. Babanin, and E. M. Bitner-Gregersen, 2007: Second-order theory and setup in surface gravity waves: a comparison with experimental data. J. Phys. Oceanogr., 37, 27262739, https://doi.org/10.1175/2007JPO3634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Essen, S., K. Ewans, and J. McConichie, 2018: Wave buoy performance in short and long waves, evaluated using tests on a hexapod. 37th Int. Conf. on Ocean, Offshore and Arctic Engineering, Madrid, Spain, American Society of Mechanical Engineers, V07BT06A001, https://doi.org/10.1115/OMAE2018-77092.

    • Crossref
    • Export Citation
  • Walker, D. A. G., P. H. Taylor, and R. Eatock Taylor, 2004: The shape of large surface waves on the open sea and the Draupner New Year wave. Appl. Ocean Res., 26, 7383, https://doi.org/10.1016/j.apor.2005.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waseda, T., and Coauthors, 2014: Deep water observations of extreme waves with moored and free GPS buoys. Ocean Dyn., 64, 12691280, https://doi.org/10.1007/s10236-014-0751-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whittaker, C. N., A. C. Raby, C. J. Fitzgerald, and P. H. Taylor, 2016: The average shape of large waves in the coastal zone. Coast. Eng., 114, 253264, https://doi.org/10.1016/j.coastaleng.2016.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 899 174 21
PDF Downloads 652 111 9