Vertical Velocity Dynamics and Mixing in an Anticyclone near the Canary Islands

S. N. Estrada-Allis Centro de Investigación Científica y Educación Superior de Ensenada, Baja California, Mexico

Search for other papers by S. N. Estrada-Allis in
Current site
Google Scholar
PubMed
Close
,
B. Barceló-Llull Mediterranean Institute for Advanced Studies (IMEDEA), Esporles, Spain

Search for other papers by B. Barceló-Llull in
Current site
Google Scholar
PubMed
Close
,
E. Pallàs-Sanz Centro de Investigación Científica y Educación Superior de Ensenada, Baja California, Mexico

Search for other papers by E. Pallàs-Sanz in
Current site
Google Scholar
PubMed
Close
,
A. Rodríguez-Santana Departamento de Física, Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain

Search for other papers by A. Rodríguez-Santana in
Current site
Google Scholar
PubMed
Close
,
J. M. A. C. Souza Centro de Investigación Científica y Educación Superior de Ensenada, Baja California, Mexico

Search for other papers by J. M. A. C. Souza in
Current site
Google Scholar
PubMed
Close
,
E. Mason Applied Physics Laboratory, University of Washington, Seattle, Washington
Mediterranean Institute for Advanced Studies (IMEDEA), Esporles, Spain

Search for other papers by E. Mason in
Current site
Google Scholar
PubMed
Close
,
J. C. McWilliams Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by J. C. McWilliams in
Current site
Google Scholar
PubMed
Close
, and
P. Sangrà Departamento de Física, Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain

Search for other papers by P. Sangrà in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The complex structure of the vertical velocity field inside an anticyclonic eddy located just south of the Canary Islands is analyzed through a high-resolution ocean model. Based on the flow divergence, vertical velocity is decomposed into various forcing components. The analysis reveals that advection and stretching of vorticity are the most important forcing contributions to the vertical velocity within the eddy. In the mixed layer, a small-scale multipolar vertical velocity pattern dominates. This is the result of vertical mixing effects that enhance the surface vertical velocity by increasing the ageostrophic velocity profile. As a result, an ageostrophic secondary circulation arises that acts to restore thermal-wind balance, inducing strong vertical motions. Nonlinear Ekman pumping/suction patterns resemble the small-scale vertical velocity field, suggesting that nonlinear Ekman effects are important in explaining the complex vertical velocity, despite an overestimate of its magnitude. In the eddy thermocline, the vertical velocity is characterized by a dipolar pattern, which experiences changes in intensity and axisymmetrization with time. The dipolar vertical velocity distribution arises from the imbalance between the advection and stretching of the vorticity forcing terms. A vertical velocity dipole is also obtained by solving a generalized omega equation from density and horizontal velocity fields, which also shows a preponderance of the ageostrophic term. The ubiquity of dipolar vertical velocity distributions inside isolated anticyclones is supported by recent observational findings in the same oceanic region.

Deceased.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. N. Estrada-Allis, sheila@cicese.mx

Abstract

The complex structure of the vertical velocity field inside an anticyclonic eddy located just south of the Canary Islands is analyzed through a high-resolution ocean model. Based on the flow divergence, vertical velocity is decomposed into various forcing components. The analysis reveals that advection and stretching of vorticity are the most important forcing contributions to the vertical velocity within the eddy. In the mixed layer, a small-scale multipolar vertical velocity pattern dominates. This is the result of vertical mixing effects that enhance the surface vertical velocity by increasing the ageostrophic velocity profile. As a result, an ageostrophic secondary circulation arises that acts to restore thermal-wind balance, inducing strong vertical motions. Nonlinear Ekman pumping/suction patterns resemble the small-scale vertical velocity field, suggesting that nonlinear Ekman effects are important in explaining the complex vertical velocity, despite an overestimate of its magnitude. In the eddy thermocline, the vertical velocity is characterized by a dipolar pattern, which experiences changes in intensity and axisymmetrization with time. The dipolar vertical velocity distribution arises from the imbalance between the advection and stretching of the vorticity forcing terms. A vertical velocity dipole is also obtained by solving a generalized omega equation from density and horizontal velocity fields, which also shows a preponderance of the ageostrophic term. The ubiquity of dipolar vertical velocity distributions inside isolated anticyclones is supported by recent observational findings in the same oceanic region.

Deceased.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. N. Estrada-Allis, sheila@cicese.mx
Save
  • Arístegui, J., P. Sangrà, S. Hernádez-León, M. Cantón, A. Hernández-Guerra, and J. L. Kerling, 1994: Island-induced eddies in the Canary Island. Deep-Sea Res. I, 41, 15091525, https://doi.org/10.1016/0967-0637(94)90058-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barceló-Llull, B., E. Pallàs-Sanz, P. Sangrà, A. Martínez-Marrero, S. Estrada-Allis, and J. Arístegui, 2017: Ageostrophic secondary circulation in a subtropical mode water eddy. J. Phys. Oceanogr., 47, 11071123, https://doi.org/10.1175/JPO-D-16-0235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brannigan, L., D. Marshall, A. Naveira-Garabato, and A. Nurser, 2015: The seasonal cycle of submesoscale flows. Ocean Modell., 92, 6984, https://doi.org/10.1016/j.ocemod.2015.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckingham, C., and Coauthors, 2016: Seasonality of submesoscale flows in the ocean surface boundary layer. Geophys. Res. Lett., 43, 21182126, https://doi.org/10.1002/2016GL068009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calil, P. H. R., and K. J. Richards, 2010: Transient upwelling hot spots in the oligotrophic North Pacific. J. Geophys. Res., 115, C02003, https://doi.org/10.1029/2009JC005360.

    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, https://doi.org/10.1175/2007JPO3672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cardona, Y., and A. Bracco, 2012: Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the South China Sea. Ocean Modell., 42, 115, https://doi.org/10.1016/j.ocemod.2011.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., M. Le Texier, G. Eldin, C. Grados, and O. Pizarro, 2011: Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. J. Geophys. Res., 116, C11025, https://doi.org/10.1029/2011JC007134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and J. Loder, 1981: Dynamical aspects of shallow sea fronts. Philos. Trans. Roy. Soc. London, 302B, 563581, https://doi.org/10.1098/rsta.1981.0183.

    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. B. Chelton, R. M. Samelson, M. G. Schlax, and L. W. O’Neill, 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104132, https://doi.org/10.1175/JPO-D-14-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giordani, H., L. Prieur, and G. Caniaux, 2006: Advanced insights into sources of vertical velocity in the ocean. Ocean Dyn., 56, 513524, https://doi.org/10.1007/s10236-005-0050-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graves, L. P., J. C. McWilliams, and M. T. Montgomery, 2006: Vortex evolution due to straining: A mechanism for dominance of strong, interior anticyclones. Geophys. Astrophys. Fluid Dyn., 100, 151183, https://doi.org/10.1080/03091920600792041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., and A. Beckmann, 1999: Numerical Ocean Circulation Modeling. Imperial College Press, 344 pp.

    • Crossref
    • Export Citation
  • Hoskins, B. J., I. Draghici, and H. A. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138, https://doi.org/10.1002/qj.49710443903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. Shay, 2010: Near-inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies. J. Phys. Oceanogr., 40, 13201337, https://doi.org/10.1175/2010JPO4309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, B., P. Sangrà, and E. Mason, 2008: A numerical study of the relative importance of wind and topographic forcing on oceanic eddy shedding by tall, deep water islands. Ocean Modell., 22, 146157, https://doi.org/10.1016/j.ocemod.2008.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., D. L. Rudnick, and E. Pallàs-Sanz, 2011: Elevated mixing at a front. J. Geophys. Res., 116, C11033, https://doi.org/10.1029/2011JC007192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koszalka, I., A. Bracco, J. C. McWilliams, and A. Provenzale, 2009: Dynamics of wind-forced coherent anticyclones in the open ocean. J. Geophys. Res., 114, C08011, https://doi.org/10.1029/2009JC005388.

    • Search Google Scholar
    • Export Citation
  • Koszalka, I., L. Ceballos, and A. Bracco, 2010: Vertical mixing and coherent anticyclones in the ocean: The role of stratification. Nonlinear Processes Geophys., 17, 3747, https://doi.org/10.5194/npg-17-37-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophic theory. J. Phys. Oceanogr., 36, 165176, https://doi.org/10.1175/JPO2840.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, https://doi.org/10.1016/j.ocemod.2006.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., L. N. Thomas, and A. Tandon, 2008: Comment on “Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms.” Science, 320, 448, https://doi.org/10.1126/science.1152111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, A., and K. Richards, 2001: Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy. Deep-Sea Res. II, 48, 757773, https://doi.org/10.1016/S0967-0645(00)00096-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, E., 2009: High-resolution modelling of the Canary Basin oceanic circulation. Ph.D. thesis, Universidad de Las Palmas de Gran Canaria, 235 pp.

  • Mason, E., J. Molemaker, A. F. Shchepetkin, F. Colas, J. C. McWilliams, and P. Sangrà, 2010: Procedures for offline grid nesting in regional ocean models. Ocean Modell., 35, 115, https://doi.org/10.1016/j.ocemod.2010.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, E., F. Colas, J. Molemaker, A. F. Shchepetkin, C. Troupin, J. McWilliams, and P. Sangrà, 2011: Seasonal variability of the Canary Current: A numerical study. J. Geophys. Res., 116, C06001, https://doi.org/10.1029/2010JC006665.

    • Search Google Scholar
    • Export Citation
  • Mason, E., F. Colas, and J. L. Pelegrí, 2012: A Lagrangian study tracing water parcel origins in the Canary Upwelling System. Sci. Mar., 76 (Suppl.), 7994, https://doi.org/10.3989/scimar.03608.18D.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, E., A. Pascual, and J. C. McWilliams, 2014: A new sea surface height–based code for oceanic mesoscale eddy tracking. J. Atmos. Oceanic Technol., 31, 11811188, https://doi.org/10.1175/JTECH-D-14-00019.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., and Coauthors, 2007: Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science, 316, 10211026, https://doi.org/10.1126/science.1136256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., J. R. Ledwell, and L. A. Anderson, 2008: Response to comment on “Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms.” Science, 320, 448, https://doi.org/10.1126/science.1148974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J., 2017: Submesoscale surface fronts and filaments: Secondary circulation, buoyancy flux, and frontogenesis. J. Fluid Mech., 823, 391432, https://doi.org/10.1017/jfm.2017.294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J., J. Gula, J. Molemaker, L. Renault, and A. F. Shchepetkin, 2015: Filament frontogenesis by boundary layer turbulence. J. Phys. Oceanogr., 45, 19882005, https://doi.org/10.1175/JPO-D-14-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Özgökmen, A. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, https://doi.org/10.1007/s10236-013-0633-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagai, T., A. Tandon, and D. L. Rudnick, 2006: Two-dimensional ageostrophic secondary circulation at ocean fronts due to vertical mixing and large-scale deformation. J. Geophys. Res., 111, C09038, https://doi.org/10.1029/2005JC002964.

    • Search Google Scholar
    • Export Citation
  • Nardelli, B. B., 2013: Vortex waves and vertical motion in a mesoscale cyclonic eddy. J. Geophys. Res. Oceans, 118, 56095624, https://doi.org/10.1002/jgrc.20345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., 1969: On the Ekman divergence in an oceanic jet. J. Geophys. Res., 74, 70487052, https://doi.org/10.1029/JC074i028p07048.

  • Ohlmann, J. C., M. J. Molemaker, B. Baschek, B. Holt, G. Marmorino, and G. Smith, 2017: Drifter observations of submesoscale flow kinematics in the coastal ocean. Geophys. Res. Lett., 44, 330337, https://doi.org/10.1002/2016GL071537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pallàs-Sanz, E., and A. Viúdez, 2005: Diagnosing mesoscale vertical velocity from horizontal velocity and density data. J. Phys. Oceanogr., 35, 17441762, https://doi.org/10.1175/JPO2784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pallàs-Sanz, E., T. M. S. Johnston, and D. L. Rudnick, 2010: Frontal dynamics in a California Current System shallow front: 2. Mesoscale vertical velocity. J. Geophys. Res., 115, C12068, https://doi.org/10.1029/2010JC006474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piedeleu, M., P. Sangrà, A. Sánchez-Vidal, J. Fabrés, C. Gordo, and A. Calafat, 2009: An observational study of oceanic eddy generation mechanisms by tall deep-water islands (Gran Canaria). Geophys. Res. Lett., 36, L14605, https://doi.org/10.1029/2008GL037010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ponte, A., P. Klein, X. Capet, P. Le Traon, Y. C. Bertrand, and P. Lherminier, 2013: Diagnosing surface mixed layer dynamics from high-resolution satellite observations: Numerical insights. J. Phys. Oceanogr., 43, 13451355, https://doi.org/10.1175/JPO-D-12-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sangrà, P., and Coauthors, 2005: Life history of an anticyclonic eddy. J. Geophys. Res., 110, C03021, https://doi.org/10.1029/2004JC002526.

    • Search Google Scholar
    • Export Citation
  • Sangrà, P., and Coauthors, 2007: On the nature of oceanic eddies shed by the island of Gran Canaria. Deep-Sea Res. I, 54, 687709, https://doi.org/10.1016/j.dsr.2007.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sangrà, P., and Coauthors, 2009: The Canary Eddy Corridor: A major pathway for long-lived eddies in the subtropical North Atlantic. Deep-Sea Res. I, 56, 21002114, https://doi.org/10.1016/j.dsr.2009.08.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al. J. Comp. Phys. 227, pp. 3595–3624. J. Comput. Phys., 228, 89859000, https://doi.org/10.1016/j.jcp.2009.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., and Coauthors, 2014: Eddy-induced variability in Southern Ocean abyssal mixing on climatic timescales. Nat. Geosci., 7, 577582, https://doi.org/10.1038/ngeo2200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, M., 1965: Interaction of a uniform wind stress with a geostrophic vortex. Deep-Sea Res., 12, 355367, https://doi.org/10.1016/0011-7471(65)90007-0.

    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and P. B. Rhines, 2002: Nonlinear stratified spin-up. J. Fluid Mech., 473, 211244, https://doi.org/10.1017/S0022112002002367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, https://doi.org/10.1175/JPO2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Viúdez, A., 2017: Isolated marginally stable geophysical vortices. J. Fluid Mech., 824, R4, https://doi.org/10.1017/jfm.2017.440.

  • Viúdez, A., and D. G. Dritschel, 2003: Vertical velocity in mesoscale geophysical flows. J. Fluid Mech., 483, 199223, https://doi.org/10.1017/S0022112003004191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viúdez, A., and D. G. Dritschel, 2004: Potential vorticity and the quasigeostrophic and semigeostrophic mesoscale vertical velocity. J. Phys. Oceanogr., 34, 865887, https://doi.org/10.1175/1520-0485(2004)034<0865:PVATQA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viúdez, A., J. Tintoré, and R. L. Haney, 1996: About the nature of the generalized omega equation. J. Atmos. Sci., 53, 787795, https://doi.org/10.1175/1520-0469(1996)053<0787:ATNOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and L. N. Thomas, 2017: Ekman transport in balanced currents with curvature. J. Phys. Oceanogr., 47, 11891203, https://doi.org/10.1175/JPO-D-16-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yelland, M., B. I. Moat, P. K. Taylor, R. W. Pascal, J. Hutchings, and V. C. Cornell, 1998: Wind stress measurements from the open ocean corrected for airflow distortion by the ship. J. Phys. Oceanogr., 28, 15111526, https://doi.org/10.1175/1520-0485(1998)028<1511:WSMFTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, Y., A. Bracco, and T. Villareal, 2012: Pattern formation at the ocean surface: Sargassum distribution and the role of the eddy field. Limnol. Oceanogr. Fluids Environ., 2, 1227, https://doi.org/10.1215/21573689-1573372.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 767 182 11
PDF Downloads 697 149 6