Persistent Lagrangian Transport Patterns in the Northwestern Gulf of Mexico

Matt K. Gough Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, México

Search for other papers by Matt K. Gough in
Current site
Google Scholar
PubMed
Close
,
Francisco J. Beron-Vera Department of Atmospheric Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Francisco J. Beron-Vera in
Current site
Google Scholar
PubMed
Close
,
María J. Olascoaga Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by María J. Olascoaga in
Current site
Google Scholar
PubMed
Close
,
Julio Sheinbaum Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, México

Search for other papers by Julio Sheinbaum in
Current site
Google Scholar
PubMed
Close
,
Julien Jouanno Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Toulouse, France

Search for other papers by Julien Jouanno in
Current site
Google Scholar
PubMed
Close
, and
Rodrigo Duran College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Rodrigo Duran in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Persistent Lagrangian transport patterns at the ocean surface are revealed from climatological Lagrangian coherent structures (cLCSs) computed from daily climatological surface current velocities in the northwestern Gulf of Mexico (NWGoM). The climatological currents are computed from daily velocities produced by an 18-yr-long free-running submesoscale-permitting Nucleus for European Modelling of the Ocean (NEMO) simulation of the Gulf of Mexico. Despite the intense submesoscale variability produced by the model along the shelf break, which is found to be consistent with observations and previous studies, a persistent mesoscale attracting barrier between the NWGoM shelf and the deep ocean is effectively identified by a hook-like pattern associated with persistent strongly attracting cLCSs. Simulated tracer and satellite-tracked drifters originating over the shelf tend to be trapped there by the hook-like pattern as they spread cyclonically. Tracers and drifters originating beyond the shelf tend to be initially attracted to the hook-like pattern as they spread anticyclonically and eventually over the deep ocean. The findings have important implications for the mitigation of contaminant accidents such as oil spills.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matt K. Gough, mkgough@nps.edu

Abstract

Persistent Lagrangian transport patterns at the ocean surface are revealed from climatological Lagrangian coherent structures (cLCSs) computed from daily climatological surface current velocities in the northwestern Gulf of Mexico (NWGoM). The climatological currents are computed from daily velocities produced by an 18-yr-long free-running submesoscale-permitting Nucleus for European Modelling of the Ocean (NEMO) simulation of the Gulf of Mexico. Despite the intense submesoscale variability produced by the model along the shelf break, which is found to be consistent with observations and previous studies, a persistent mesoscale attracting barrier between the NWGoM shelf and the deep ocean is effectively identified by a hook-like pattern associated with persistent strongly attracting cLCSs. Simulated tracer and satellite-tracked drifters originating over the shelf tend to be trapped there by the hook-like pattern as they spread cyclonically. Tracers and drifters originating beyond the shelf tend to be initially attracted to the hook-like pattern as they spread anticyclonically and eventually over the deep ocean. The findings have important implications for the mitigation of contaminant accidents such as oil spills.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matt K. Gough, mkgough@nps.edu
Save
  • Beron-Vera, F. J., and J. H. LaCasce, 2016: Statistics of simulated and observed pair separations in the Gulf of Mexico. J. Phys. Oceanogr., 46, 21832199, https://doi.org/10.1175/JPO-D-15-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beron-Vera, F. J., M. J. Olascoaga, G. Haller, M. Farazmand, J. Triñanes, and Y. Wang, 2015: Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean. Chaos, 25, 087412, https://doi.org/10.1063/1.4928693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, P. P., L. M. Ivanov, and O. V. Melnichenko, 2005: Fall–winter current reversals on the Texas–Louisiana continental shelf. J. Phys. Oceanogr., 35, 902910, https://doi.org/10.1175/JPO2703.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and K. E. Trenberth, 2002: Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeor., 3, 660687, https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duran, R., F. J. Beron-Vera, and M. J. Olascoaga, 2018: Extracting quasi-steady Lagrangian transport patterns from the ocean circulation: An application to the Gulf of Mexico. Sci. Rep., 8, 5218, https://doi.org/10.1038/s41598-018-23121-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dussin, R., B. Barnier, L. Brodeau, and J. M. Molines, 2016: The making of Drakkar forcing set DFS5. DRAKKAR/MyOcean Rep. 01-04-16, 34 pp., https://www.drakkar-ocean.eu/publications/reports/report_DFS5v3_April2016.pdf.

  • Farazmand, M., D. Blazevski, and G. Haller, 2014: Shearless transport barriers in unsteady two-dimensional flows and maps. Physica D, 278–279, 4457, https://doi.org/10.1016/j.physd.2014.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gough, M. K., A. Reniers, M. J. Olascoaga, B. K. Haus, J. MacMahan, J. Paduan, and C. Halle, 2016: Lagrangian Coherent Structures in a coastal upwelling environment. Cont. Shelf Res., 128, 3650, https://doi.org/10.1016/j.csr.2016.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, C. A., and R. R. Leben, 2016: Observational evidence of seasonality in the timing of loop current eddy separation. Dyn. Atmos. Oceans, 76, 240267, https://doi.org/10.1016/j.dynatmoce.2016.06.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haller, G., 2011: A variational theory of hyperbolic Lagrangian coherent structures. Physica D, 240, 574598, https://doi.org/10.1016/j.physd.2010.11.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haller, G., 2015: Lagrangian coherent structures. Annu. Rev. Fluid Mech., 47, 137162, https://doi.org/10.1146/annurev-fluid-010313-141322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haller, G., and F. J. Beron-Vera, 2012: Geodesic theory of transport barriers in two-dimensional flows. Physica D, 241, 16801702, https://doi.org/10.1016/j.physd.2012.06.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, P., G. S. Fargion, and D. C. Biggs, 1999: Loop current eddy paths in the western Gulf of Mexico. J. Phys. Oceanogr., 29, 11801207, https://doi.org/10.1175/1520-0485(1999)029<1180:LCEPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, P., T. J. Berger, and W. Johnson, 2002: On the structure and motions of cyclones in the northern Gulf of Mexico. J. Geophys. Res., 107, 3208, https://doi.org/10.1029/1999JC000270.

    • Search Google Scholar
    • Export Citation
  • Jouanno, J., J. Ochoa, E. Pallàs-Sanz, J. Sheinbaum, F. Andrade-Canto, J. Candela, and J.-M. Molines, 2016: Loop current frontal eddies: Formation along the Campeche Bank and impact of coastally trapped waves. J. Phys. Oceanogr., 46, 33393363, https://doi.org/10.1175/JPO-D-16-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leben, R. R., 2005: Altimeter-derived Loop Current metrics. Circulation in the Gulf of Mexico: Observations and Models, Geophys. Monogr., Vol. 161, Amer. Geophys. Union, 181–201.

    • Crossref
    • Export Citation
  • Lumpkin, R., and M. Pazos, 2007: Measuring surface currents with Surface Velocity Program drifters: The instrument, its data, and some recent results. Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, Cambridge University Press, 39–67.

    • Crossref
    • Export Citation
  • Luo, H., A. Bracco, Y. Cardona, and J. C. McWilliams, 2016: Submesoscale circulation in the northern Gulf of Mexico: Surface processes and the impact of the freshwater river input. Ocean Modell., 101, 6882, https://doi.org/10.1016/j.ocemod.2016.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., and the NEMO Team, 2016: NEMO ocean engine. Note du Pole de modélisation de l’Institut Pierre-Simon Laplace 27, 386 pp., https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf.

  • Martínez-López, B., and J. Zavala-Hidalgo, 2009: Seasonal and interannual variability of cross-shelf transports of chlorophyll in the Gulf of Mexico. J. Mar. Syst., 77, 120, https://doi.org/10.1016/j.jmarsys.2008.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miron, P., F. J. Beron-Vera, M. J. Olascoaga, J. Sheinbaum, P. Pérez-Brunius, and G. Froyland, 2017: Lagrangian dynamical geography of the Gulf of Mexico. Sci. Rep., 7, 7021, https://doi.org/10.1038/s41598-017-07177-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morey, S. L., J. Zavala-Hidalgo, and J. J. O’Brien, 2005: The seasonal variability of continental shelf circulation in the northern and western Gulf of Mexico from a high-resolution numerical model. Circulation in the Gulf of Mexico: Observations and Models, Geophys. Monogr., Vol. 161, Amer. Geophys. Union, 203–218.

    • Crossref
    • Export Citation
  • Oey, L.-Y., 1995: Eddy- and wind-forced shelf circulation. J. Geophys. Res., 100, 86218637, https://doi.org/10.1029/95JC00785.

  • Ohlmann, J. C., and P. P. Niiler, 2005: Circulation over the continental shelf in the northern Gulf of Mexico. Prog. Oceanogr., 64, 4581, https://doi.org/10.1016/j.pocean.2005.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olascoaga, M. J., 2010: Isolation on the West Florida Shelf with implications for red tides and pollutant dispersal in the Gulf of Mexico. Nonlinear Processes Geophys., 17, 685696, https://doi.org/10.5194/npg-17-685-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olascoaga, M. J., and G. Haller, 2012: Forecasting sudden changes in environmental pollution patterns. Proc. Natl. Acad. Sci. USA, 109, 47384743, https://doi.org/10.1073/pnas.1118574109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olascoaga, M. J., and Coauthors, 2013: Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures. Geophys. Res. Lett., 40, 61716175, https://doi.org/10.1002/2013GL058624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onu, K., F. Huhn, and G. Haller, 2015: LCS Tool: A computational platform for Lagrangian coherent structures. J. Comput. Sci., 7, 2636, https://doi.org/10.1016/j.jocs.2014.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., and Coauthors, 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, https://doi.org/10.1073/pnas.1402452111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., and S. Wiggins, 2006: Lagrangian Transport in Geophysical Jets and Waves. Interdisciplinary Applied Mathematics, Vol. 31, Springer, 150 pp.

  • Sandery, P. A., and P. Sakov, 2017: Ocean forecasting of mesoscale features can deteriorate by increasing model resolution towards the submesoscale. Nat. Commun., 8, 1566, https://doi.org/10.1038/s41467-017-01595-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturges, W., 1993: The annual cycle of the western boundary current in the Gulf of Mexico. J. Geophys. Res., 98, 18 05318 068, https://doi.org/10.1029/93JC01730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturges, W., and R. Leben, 2000: Frequency of ring separations from the Loop Current in the Gulf of Mexico: A revised estimate. J. Phys. Oceanogr., 30, 18141819, https://doi.org/10.1175/1520-0485(2000)030<1814:FORSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturges, W., P. Pearn, P. P. Niiler, and R. H. Weisberg, 2001: Northeastern Gulf of Mexico inner shelf circulation study. OCS Rep. MMS 2001-103, 90 pp., https://www.boem.gov/ESPIS/3/3216.pdf .

  • Sutyrin, G. G., G. D. Rowe, L. M. Rothstein, and I. Ginis, 2003: Baroclinic eddy interactions with continental slopes and shelves. J. Phys. Oceanogr., 33, 283291, https://doi.org/10.1175/1520-0485(2003)033<0283:BEIWCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thyng, K. M., R. D. Hetland, M. T. Ogle, X. Zhang, F. Chen, and L. Campbell, 2013: Origins of Karenia brevis harmful algal blooms along the Texas coast. Limnol. Oceanogr. Fluids Environ., 3, 269278, https://doi.org/10.1215/21573689-2417719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vukovich, F. M., and B. W. Crissman, 1986: Aspects of warm rings in the Gulf of Mexico. J. Geophys. Res., 91, 26452660, https://doi.org/10.1029/JC091iC02p02645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zavala-Hidalgo, J., S. L. Morey, and J. J. O’Brien, 2003: Seasonal circulation on the western shelf of the Gulf of Mexico using a high-resolution numerical model. J. Geophys. Res., 108, 3389, https://doi.org/10.1029/2003JC001879.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and R. Hetland, 2012: A numerical study on convergence of alongshore flows over the Texas-Louisiana shelf. J. Geophys. Res., 117, C11010, https://doi.org/10.1029/2012JC008145.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1665 488 31
PDF Downloads 616 137 7