Modulation of Near-Inertial Oscillations by Low-Frequency Current Variations on the Inner Scotian Shelf

Pengcheng Wang Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by Pengcheng Wang in
Current site
Google Scholar
PubMed
Close
,
Zhongjie He Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada, and Harbin Engineering University, Harbin, China

Search for other papers by Zhongjie He in
Current site
Google Scholar
PubMed
Close
,
Keith R. Thompson Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by Keith R. Thompson in
Current site
Google Scholar
PubMed
Close
, and
Jinyu Sheng Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada

Search for other papers by Jinyu Sheng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Near-inertial oscillations (NIOs) on the inner Scotian shelf are studied using observations, a simple slab model, and two operational shelf circulation models. High-frequency radar and ADCP observations from December 2015 to February 2016 show that individual NIO events forced by time-varying wind stress typically lasted for three to four inertial periods. NIOs with speeds exceeding 0.25 m s−1 were observed in the offshore part of the study region, but their amplitudes decreased shoreward within ~40 km of the coast. The NIOs had spatial scales of ~80 and ~40 km in the alongshore and cross-shore directions, respectively. The NIO phases varied moving from west to east, consistent with the typical movement of winter storms across the study region. Evolving rotary spectral analysis reveals that the peak frequency fp of the NIOs varied with time by ~7% of the local inertial frequency. The variation in fp can be explained in part by local wind forcing as demonstrated by the slab model. The remaining variation in fp can be explained in part by variations in the background vorticity associated with changes in the strength and position of the Nova Scotia Current, an unstable baroclinic boundary current that runs along the coast to the southwest. Two operational shelf circulation models are used to examine the abovementioned features in the high-frequency-radar and ADCP observations. The models reproduce the spatial structure of the NIOs and, in a qualitative sense, the temporal variations of fp.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Pengcheng Wang, pengcheng.wang@dal.ca; Jinyu Sheng, jinyu.sheng@dal.ca

Abstract

Near-inertial oscillations (NIOs) on the inner Scotian shelf are studied using observations, a simple slab model, and two operational shelf circulation models. High-frequency radar and ADCP observations from December 2015 to February 2016 show that individual NIO events forced by time-varying wind stress typically lasted for three to four inertial periods. NIOs with speeds exceeding 0.25 m s−1 were observed in the offshore part of the study region, but their amplitudes decreased shoreward within ~40 km of the coast. The NIOs had spatial scales of ~80 and ~40 km in the alongshore and cross-shore directions, respectively. The NIO phases varied moving from west to east, consistent with the typical movement of winter storms across the study region. Evolving rotary spectral analysis reveals that the peak frequency fp of the NIOs varied with time by ~7% of the local inertial frequency. The variation in fp can be explained in part by local wind forcing as demonstrated by the slab model. The remaining variation in fp can be explained in part by variations in the background vorticity associated with changes in the strength and position of the Nova Scotia Current, an unstable baroclinic boundary current that runs along the coast to the southwest. Two operational shelf circulation models are used to examine the abovementioned features in the high-frequency-radar and ADCP observations. The models reproduce the spatial structure of the NIOs and, in a qualitative sense, the temporal variations of fp.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Pengcheng Wang, pengcheng.wang@dal.ca; Jinyu Sheng, jinyu.sheng@dal.ca
Save
  • Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, C., and P. Smith, 1989: Oceanographic observations on the Scotian shelf during CASP. Atmos.–Ocean, 27, 130156, https://doi.org/10.1080/07055900.1989.9649331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, D. L. T., and A. E. Gill, 1979: Beta dispersion of inertial waves. J. Geophys. Res., 84, 18361842, https://doi.org/10.1029/JC084iC04p01836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmforth, N. J., and W. R. Young, 1999: Radiative damping of near-inertial oscillations in the mixed layer. J. Mar. Res., 57, 561584, https://doi.org/10.1357/002224099321549594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bondur, V. G., K. D. Sabinin, and Y. V. Grebenyuk, 2013: Anomalous variation of the ocean’s inertial oscillations at the Hawaii shelf. Dokl. Earth Sci., 450, 526530, https://doi.org/10.1134/S1028334X13050012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, R., L. Shay, H. Graber, J. Edson, A. Karachintsev, C. Trump, and D. Ross, 1997: On the accuracy of HF radar surface current measurements: Intercomparisons with ship-based sensors. J. Geophys. Res., 102, 18 73718 748, https://doi.org/10.1029/97JC00049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the mixed layer. J. Phys. Oceanogr., 15, 943959, https://doi.org/10.1175/1520-0485(1985)015<0943:UOTSIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dever, M., 2017: Dynamics of the Nova Scotian Current and linkages with Atlantic salmon migration patterns over the Scotian shelf. Ph.D. dissertation, Dalhousie University, 196 pp., https://dalspace.library.dal.ca/handle/10222/72747.

  • Dever, M., D. Hebert, B. Greenan, J. Sheng, and P. Smith, 2016: Hydrography and coastal circulation along the Halifax Line and the connections with the Gulf of St. Lawrence. Atmos.–Ocean, 54, 199217, https://doi.org/10.1080/07055900.2016.1189397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elipot, S., R. Lumpkin, and G. Prieto, 2010: Modification of inertial oscillations by the mesoscale eddy field. J. Geophys. Res., 115, C09010, https://doi.org/10.1029/2009JC005679.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., 1982: Observations of internal wave reflection off sloping bottoms. J. Geophys. Res., 87, 525538, https://doi.org/10.1029/JC087iC01p00525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 2001: What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31, 962971, https://doi.org/10.1175/1520-0485(2001)031<0962:WITNIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geshelin, Y., J. Sheng, R. J. Greatbatch, 1999: Monthly mean climatologies of temperatures and salinity in the western North Atlantic. Fisheries and Oceans Canada Canadian Data Rep. of Hydrography and Ocean Sciences 153, 62 pp., http://publications.gc.ca/collections/collection_2016/mpo-dfo/Fs97-16-153-eng.pdf.

  • Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 11291151, https://doi.org/10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonella, J., 1972: A rotary-component method for analysing meteorological and oceanographic vector time series. Deep-Sea Res. Oceanogr. Abstr., 19, 833846, https://doi.org/10.1016/0011-7471(72)90002-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z., L. Wu, and X. Ma, 2017: Energy exchange between the mesoscale oceanic eddies and wind-forced near-inertial oscillations. J. Phys. Oceanogr., 47, 721733, https://doi.org/10.1175/JPO-D-16-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jochum, M., B. P. Briegleb, G. Danabasoglu, W. G. Large, N. J. Norton, S. R. Jayne, M. H. Alford, and F. O. Bryan, 2013: The impact of oceanic near-inertial waves on climate. J. Climate, 26, 28332844, https://doi.org/10.1175/JCLI-D-12-00181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordi, A., and D. Wang, 2008: Near-inertial motions in and around the Palamós submarine canyon (NW Mediterranean) generated by a severe storm. Cont. Shelf Res., 28, 25232534, https://doi.org/10.1016/j.csr.2008.07.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katavouta, A., and K. Thompson, 2016: Downscaling ocean conditions with application to the Gulf of Maine, Scotian shelf and adjacent deep ocean. Ocean Modell., 104, 5472, https://doi.org/10.1016/j.ocemod.2016.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katavouta, A., K. Thompson, Y. Lu, and J. Loder, 2016: Interaction between the tidal and seasonal variability of the Gulf of Maine and Scotian shelf region. J. Phys. Oceanogr., 46, 32793298, https://doi.org/10.1175/JPO-D-15-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., and P. M. Kosro, 2013: Observations of near-inertial surface currents off Oregon: Decorrelation time and length scales. J. Geophys. Res. Oceans, 118, 37233736, https://doi.org/10.1002/jgrc.20235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., and R. E. Thomson, 1985: Inertial oscillations due to a moving front. J. Phys. Oceanogr., 15, 10761084, https://doi.org/10.1175/1520-0485(1985)015<1076:IODTAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., S.-Y. Chao, and J. P. McCreary, 1983: Transient coastal currents and inertio-gravity waves. Deep-Sea Res., 30A, 10591082, https://doi.org/10.1016/0198-0149(83)90061-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagerloef, G. S., and R. D. Muench, 1987: Near-inertial current oscillations in the vicinity of the Bering Sea marginal ice zone. J. Geophys. Res., 92, 11 78911 802, https://doi.org/10.1029/JC092iC11p11789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levier, B., A. M. Treguier, G. Madec, and V. Garnier, 2007: Free surface and variable volume in the NEMO code. MERSEA IP Rep. WP09-CNRS-STR-03-1A, 46 pp.

  • Lyard, F., F. Lefevre, T. Letellier, and O. Francis, 2006: Modelling the global ocean tides: Modern insight from FES2004. Ocean Dyn., 56, 394415, https://doi.org/10.1007/s10236-006-0086-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and M. C. Gregg, 2005: Near-inertial waves on the New England shelf: The role of evolving stratification, turbulent dissipation, and bottom drag. J. Phys. Oceanogr., 35, 24082424, https://doi.org/10.1175/JPO2822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazzini, P. L., J. A. Barth, R. K. Shearman, and A. Erofeev, 2014: Buoyancy-driven coastal currents off Oregon during fall and winter. J. Phys. Oceanogr., 44, 28542876, https://doi.org/10.1175/JPO-D-14-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., 2004: Users guide for a three dimensional, primitive equation, numerical ocean model. Princeton University Program in Atmospheric and Oceanic Sciences Rep., 56 pp., http://jes.apl.washington.edu/modsims_two/usersguide0604.pdf.

  • Mihanović, H., C. Pattiaratchi, and F. Verspecht, 2016: Diurnal sea breezes force near-inertial waves along Rottnest continental shelf, southwestern Australia. J. Phys. Oceanogr., 46, 34873508, https://doi.org/10.1175/JPO-D-16-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molines, J. M., B. Barnier, T. Penduff, A. M. Treguier, and J. Le Sommer, 2014: ORCA12.L46 climatological and interannual simulations forced with DFS4.4: GJM02 and MJM88. Drakkar Group Experiment Rep. GDRI-DRAKKAR-2014-03-19, 49 pp.

  • Mooers, C. N. K., 1975: Several effects of a baroclinic current on the cross-stream propagation of inertial-internal waves. Geophys. Fluid Dyn., 6, 245275, https://doi.org/10.1080/03091927509365797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., 1976: On the diffusion of momentum and mass by internal gravity waves. J. Fluid Mech., 77, 789823, https://doi.org/10.1017/S0022112076002899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagasawa, M., Y. Niwa, and T. Hibiya, 2000: Spatial and temporal distribution of the wind-induced internal wave energy available for deep water mixing in the North Pacific. J. Geophys. Res., 105, 13 93313 943, https://doi.org/10.1029/2000JC900019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohashi, K., and J. Sheng, 2013: Influence of St. Lawrence River discharge on the circulation and hydrography in Canadian Atlantic waters. Cont. Shelf Res., 58, 3249, https://doi.org/10.1016/j.csr.2013.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohashi, K., and J. Sheng, 2016: Investigating the effect of oceanographic conditions and swimming behaviours on the movement of particles in the Gulf of St. Lawrence using an individual-based numerical model. Atmos.–Ocean, 54, 278298, https://doi.org/10.1080/07055900.2015.1090390.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohashi, K., J. Sheng, K. Thompson, and H. Ritchie, 2006: Simulating seasonal variability of circulation and hydrography on the Scotian shelf. Estuarine and Coastal Modeling (2005), M. L. Spaulding, Ed., ASCE, 123–137, https://doi.org/10.1061/40876(209)8.

    • Crossref
    • Export Citation
  • Ohashi, K., J. Sheng, K. Thompson, C. Hannah, and H. Ritchie, 2009a: Effect of stratification on tidal circulation over the Scotian shelf and Gulf of St. Lawrence: A numerical study using a three-dimensional shelf circulation model. Ocean Dyn., 59, 809825, https://doi.org/10.1007/s10236-009-0212-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohashi, K., J. Sheng, K. Thompson, C. Hannah, and H. Ritchie, 2009b: Numerical study of three-dimensional shelf circulation on the Scotian shelf using a shelf circulation model. Cont. Shelf Res., 29, 21382156, https://doi.org/10.1016/j.csr.2009.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paduan, J. D., R. A. Szoeke, and R. A. Weller, 1989: Inertial oscillations in the upper ocean during the Mixed Layer Dynamics Experiment (MILDEX). J. Geophys. Res., 94, 48354842, https://doi.org/10.1029/JC094iC04p04835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J. J., K. Kim, and R. W. Schmitt, 2009: Global distribution of the decay timescale of mixed layer inertial motions observed by satellite-tracked drifters. J. Geophys. Res., 114, C11010, https://doi.org/10.1029/2008JC005216.

    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937, https://doi.org/10.1016/S0098-3004(02)00013-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petrie, B., 1987: Undulations of the Nova Scotia Current. Atmos.–Ocean, 25, 19, https://doi.org/10.1080/07055900.1987.9649260.

  • Pollard, R. T., and R. C. Millard Jr., 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res. Oceanogr. Abstr., 17, 813816, https://doi.org/10.1016/0011-7471(70)90043-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulain, P., D. Luther, and W. Patzert, 1992: Deriving inertial wave characteristics from surface drifter velocities: Frequency variability in the tropical Pacific. J. Geophys. Res., 97, 17 94717 959, https://doi.org/10.1029/92JC01381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M., P. Vickery, and T. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shearman, R. K., 2005: Observations of near-inertial current variability on the New England shelf. J. Geophys. Res., 110, C02012, https://doi.org/10.1029/2004JC002341.

    • Search Google Scholar
    • Export Citation
  • Sheng, J., R. Greatbatch, and D. Wright, 2001: Improving the utility of ocean circulation models through adjustment of the momentum balance. J. Geophys. Res., 106, 16 71116 728, https://doi.org/10.1029/2000JC000680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. C., 1989: Inertial oscillations near the coast of Nova Scotia during CASP. Atmos.–Ocean, 27, 181209, https://doi.org/10.1080/07055900.1989.9649333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R., and J. Joy, 1974: HF radio measurements of surface currents. Deep-Sea Res. Oceanogr. Abstr., 21, 10391049, https://doi.org/10.1016/0011-7471(74)90066-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, K., and J. Sheng, 1997: Subtidal circulation on the Scotian shelf: Assessing the hindcast skill of a linear, barotropic model. J. Geophys. Res., 102, 24 98725 003, https://doi.org/10.1029/97JC00368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, K., K. Ohashi, J. Sheng, J. Bobanovic, and J. Ou, 2007: Suppressing bias and drift of coastal circulation models through the assimilation of seasonal climatologies of temperature and salinity. Cont. Shelf Res., 27, 13031316, https://doi.org/10.1016/j.csr.2006.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urrego-Blanco, J., and J. Sheng, 2012: Interannual variability of the circulation over the eastern Canadian shelf. Atmos.–Ocean, 50, 277300, https://doi.org/10.1080/07055900.2012.680430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P., and J. Sheng, 2016: A comparative study of wave-current interactions over the eastern Canadian shelf under severe weather conditions using a coupled wave-circulation model. J. Geophys. Res. Oceans, 121, 52525281, https://doi.org/10.1002/2016JC011758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P., and J. Sheng, 2018: Tidal modulation of surface gravity waves in the Gulf of Maine. J. Phys. Oceanogr., 48, 23052323, https://doi.org/10.1175/JPO-D-17-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, D. G., K. R. Thompson, and Y. Lu, 2006: Assimilating long-term hydrographic information into an eddy-permitting model of the North Atlantic. J. Geophys. Res., 111, C09022, https://doi.org/10.1029/2005JC003200.

    • Search Google Scholar
    • Export Citation
  • Zervakis, V., and M. D. Levine, 1995: Near-inertial energy propagation from the mixed layer: Theoretical considerations. J. Phys. Oceanogr., 25, 28722889, https://doi.org/10.1175/1520-0485(1995)025<2872:NIEPFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, and J. Sheng, 2004: Advective spreading of storm-induced inertial oscillations in a model of the northwest Atlantic Ocean. Geophys. Res. Lett., 31, L14315, https://doi.org/10.1029/2004GL020084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, and J. Zhao, 2005: Enhanced vertical propagation of storm-induced near-inertial energy in an eddying ocean channel model. Geophys. Res. Lett., 32, L18602, https://doi.org/10.1029/2005GL023643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, and C. Eden, 2007: Spreading of near-inertial energy in a 1/28 model of the North Atlantic Ocean. Geophys. Res. Lett., 34, L10609, https://doi.org/10.1029/2007GL029895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. J. Greatbatch, C. Eden, and T. Hibiya, 2009: On the loss of wind-induced near-inertial energy to turbulent mixing in the upper ocean. J. Phys. Oceanogr., 39, 30403045, https://doi.org/10.1175/2009JPO4259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 416 136 12
PDF Downloads 462 162 6