Lagrangian Investigation of Wave-Driven Turbulence in the Ocean Surface Boundary Layer

Tobias Kukulka University of Delaware, Newark, Delaware

Search for other papers by Tobias Kukulka in
Current site
Google Scholar
PubMed
Close
and
Fabrice Veron University of Delaware, Newark, Delaware

Search for other papers by Fabrice Veron in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Turbulent processes in the ocean surface boundary layer (OSBL) play a key role in weather and climate systems. This study explores a Lagrangian analysis of wave-driven OSBL turbulence, based on a large-eddy simulation (LES) model coupled to a Lagrangian stochastic model (LSM). Langmuir turbulence (LT) is captured by Craik–Leibovich wave forcing that generates LT through the Craik–Leibovich type 2 (CL2) mechanism. Breaking wave (BW) effects are modeled by a surface turbulent kinetic energy flux that is constrained by wind energy input to surface waves. Unresolved LES subgrid-scale (SGS) motions are simulated with the LSM to be energetically consistent with the SGS model of the LES. With LT, Lagrangian autocorrelations of velocities reveal three distinct turbulent time scales: an integral, a dispersive mixing, and a coherent structure time. Coherent structures due to LT result in relatively narrow peaks of Lagrangian frequency velocity spectra. With and without waves, the high-frequency spectral tail is consistent with expectations for the inertial subrange, but BWs substantially increase spectral levels at high frequencies. Consistently, over short times, particle-pair dispersion results agree with the Richardson–Obukhov law, and near-surface dispersion is significantly enhanced because of BWs. Over longer times, our dispersion results are consistent with Taylor dispersion. In this case, turbulent diffusivities are substantially larger with LT in the crosswind direction, but reduced in the along-wind direction because of enhanced turbulent transport by LT that reduces mean Eulerian shear. Our results indicate that the Lagrangian analysis framework is effective and physically intuitive to characterize OSBL turbulence.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tobias Kukulka, kukulka@udel.edu

Abstract

Turbulent processes in the ocean surface boundary layer (OSBL) play a key role in weather and climate systems. This study explores a Lagrangian analysis of wave-driven OSBL turbulence, based on a large-eddy simulation (LES) model coupled to a Lagrangian stochastic model (LSM). Langmuir turbulence (LT) is captured by Craik–Leibovich wave forcing that generates LT through the Craik–Leibovich type 2 (CL2) mechanism. Breaking wave (BW) effects are modeled by a surface turbulent kinetic energy flux that is constrained by wind energy input to surface waves. Unresolved LES subgrid-scale (SGS) motions are simulated with the LSM to be energetically consistent with the SGS model of the LES. With LT, Lagrangian autocorrelations of velocities reveal three distinct turbulent time scales: an integral, a dispersive mixing, and a coherent structure time. Coherent structures due to LT result in relatively narrow peaks of Lagrangian frequency velocity spectra. With and without waves, the high-frequency spectral tail is consistent with expectations for the inertial subrange, but BWs substantially increase spectral levels at high frequencies. Consistently, over short times, particle-pair dispersion results agree with the Richardson–Obukhov law, and near-surface dispersion is significantly enhanced because of BWs. Over longer times, our dispersion results are consistent with Taylor dispersion. In this case, turbulent diffusivities are substantially larger with LT in the crosswind direction, but reduced in the along-wind direction because of enhanced turbulent transport by LT that reduces mean Eulerian shear. Our results indicate that the Lagrangian analysis framework is effective and physically intuitive to characterize OSBL turbulence.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tobias Kukulka, kukulka@udel.edu
Save
  • Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. A. Hwang, A. J. Williams, W. M. Drennan, K. K. Kahma, and S. A. Krtaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219220, https://doi.org/10.1038/359219a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1950: The application of the similarity theory of turbulence to atmospheric diffusion. Quart. J. Roy. Meteor. Soc., 76, 133146, https://doi.org/10.1002/qj.49707632804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.

    • Crossref
    • Export Citation
  • Bendat, J. S., and A. G. Piersol, Eds., 2000: Random Data, Analysis and Measurement Procedures. 3rd ed. John Wiley and Sons, 594 pp.

  • Brunner, K., T. Kukulka, G. Proskurowski, and K. L. Law, 2015: Passive buoyant tracers in the ocean surface boundary layer: 2. Observations and simulations of microplastic marine debris. J. Geophys. Res. Oceans, 120, 75597573, https://doi.org/10.1002/2015JC010840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colbo, K., and M. Li, 1999: Parameterizing particle dispersion in Langmuir circulation. J. Geophys. Res., 104, 26 05926 068, https://doi.org/10.1029/1999JC900190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corrsin, S., 1963: Estimates of the relations between Eulerian and Lagrangian scales in large Reynolds number turbulence. J. Atmos. Sci., 20, 115119, https://doi.org/10.1175/1520-0469(1963)020<0115:EOTRBE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, P. D., and M. L. Banner, 1994: Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24, 25462559, https://doi.org/10.1175/1520-0485(1994)024<2546:MWETIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, https://doi.org/10.1017/S0022112076001420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2003: Performance of autonomous Lagrangian floats. J. Atmos. Oceanic Technol., 20, 896911, https://doi.org/10.1175/1520-0426(2003)020<0896:POALF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101115, https://doi.org/10.1146/annurev-marine-010213-135138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., J. Thomson, A. Y. Shcherbina, R. R. Harcourt, M. F. Cronin, M. A. Hemer, and B. Fox-Kemper, 2014: Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett., 41, 102107, https://doi.org/10.1002/2013GL058193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1991: Lagrangian ocean studies. Annu. Rev. Fluid Mech., 23, 4364, https://doi.org/10.1146/annurev.fl.23.010191.000355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denman, K. L., and A. E. Gargett, 1995: Biological physical interactions in the upper ocean: The role of vertical and small-scale transport processes. Annu. Rev. Fluid Mech., 27, 225255, https://doi.org/10.1146/annurev.fl.27.010195.001301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, 315A, 509562, https://doi.org/10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Doney, S. C., V. J. Fabry, R. A. Feely, and J. A. Kleypas, 2009: Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci., 1, 169192, https://doi.org/10.1146/annurev.marine.010908.163834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esler, J. G., and H. M. Ramli, 2017: Shear dispersion in the turbulent atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 143, 17211733, https://doi.org/10.1002/qj.3039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, H. B., 1973: Longitudinal dispersion and turbulent mixing in open-channel flow. Annu. Rev. Fluid Mech., 5, 5978, https://doi.org/10.1146/annurev.fl.05.010173.000423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., J. Wells, A. E. Tejada-Martinez, and C. E. Grosch, 2004: Langmuir supercells: A mechanism for sediment resuspension and transport in shallow seas. Science, 306, 19251928, https://doi.org/10.1126/science.1100849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 18711887, https://doi.org/10.1175/2009JPO4119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2010: Measurement of vertical kinetic energy and vertical velocity skewness in oceanic boundary layers by imperfectly Lagrangian floats. J. Atmos. Oceanic Technol., 27, 19181935, https://doi.org/10.1175/2010JTECHO731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jähne, B., and H. Haußecker, 1998: Air-water gas exchange. Annu. Rev. Fluid Mech., 30, 443468, https://doi.org/10.1146/annurev.fluid.30.1.443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-W., C.-H. Moeng, J. C. Weil, and M. C. Barth, 2005: Lagrangian particle dispersion modeling of the fumigation process using large-eddy simulation. J. Atmos. Sci., 62, 19321946, https://doi.org/10.1175/JAS3435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, Eds., 1996: Dynamics and Modelling of Ocean Waves. 1st ed. Cambridge University Press, 532 pp.

  • Kukulka, T., and K. Brunner, 2015: Passive buoyant tracers in the ocean surface boundary layer: 1. Influence of equilibrium wind-waves on vertical distributions. J. Geophys. Res. Oceans, 120, 38373858, https://doi.org/10.1002/2014JC010487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2009: Significance of Langmuir circulation in upper ocean mixing: Comparison of observations and simulations. Geophys. Res. Lett., 36, L10603, https://doi.org/10.1029/2009GL037620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2011: The influence of crosswind tidal currents on Langmuir circulation in a shallow ocean. J. Geophys. Res., 116, C08005, https://doi.org/10.1029/2011JC006971.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., A. J. Plueddemann, and P. P. Sullivan, 2012: Nonlocal transport due to Langmuir circulation in a coastal ocean. J. Geophys. Res., 117, C12007, https://doi.org/10.1029/2012JC008340.

    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech., 15, 391427, https://doi.org/10.1146/annurev.fl.15.010183.002135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res. I, 52, 259278, https://doi.org/10.1016/j.dsr.2004.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., S. Vagle, and D. M. Farmer, 2009: Large-eddy simulations of upper-ocean response to a midlatitude storm and comparison with observations. J. Phys. Oceanogr., 39, 22952309, https://doi.org/10.1175/2009JPO4165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., M. Li, G. P. Gerbi, and J.-B. Song, 2013: Roles of breaking waves and Langmuir circulation in the surface boundary layer of a coastal ocean. J. Geophys. Res. Oceans, 118, 51735187, https://doi.org/10.1002/jgrc.20387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, J.-H., S. R. Emerson, E. A. D’Asaro, C. L. McNeil, R. R. Harcourt, P. P. Sullivan, B. Yang, and M. F. Cronin, 2017: On the role of sea-state in bubble-mediated air-sea gas flux during a winter storm. J. Geophys. Res. Oceans, 122, 26712685, https://doi.org/10.1002/2016JC012408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., E. A. D’Asaro, and G. T. Dairiki, 1998: Lagrangian frequency spectra of vertical velocity and vorticity in high-Reynolds-number oceanic turbulence. J. Fluid Mech., 362, 177198, https://doi.org/10.1017/S0022112098008787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and P. R. Kramer, 1999: Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena. Phys. Rep., 314, 237574, https://doi.org/10.1016/S0370-1573(98)00083-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C. H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1996: The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech., 28, 279321, https://doi.org/10.1146/annurev.fl.28.010196.001431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., and S. Nakada, 2010: Estimation of the particle flux from the convective mixed layer by large eddy simulation. J. Geophys. Res., 115, C05007, https://doi.org/10.1029/2009JC005669.

    • Crossref
    • Export Citation
  • Noh, Y., H. S. Min, and S. Raasch, 2004: Large-eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34, 720735, https://doi.org/10.1175/1520-0485(2004)034<0720:LESOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., I. S. Kang, M. Herold, and S. Raasch, 2006: Large eddy simulation of particle settling in the ocean mixed layer. Phys. Fluids, 18, 085109, https://doi.org/10.1063/1.2337098.

    • Crossref
    • Export Citation
  • Özgökmen, T. M., L. I. Piterbarg, A. J. Mariano, and E. H. Ryan, 2001: Predictability of drifter trajectories in the tropical Pacific Ocean. J. Phys. Oceanogr., 31, 26912720, https://doi.org/10.1175/1520-0485(2001)031<2691:PODTIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., A. C. Poje, P. F. Fischer, and A. C. Haza, 2011: Large eddy simulations of mixed layer instabilities and sampling strategies. Ocean Modell., 39, 311331, https://doi.org/10.1016/j.ocemod.2011.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papavassiliou, D. V., and T. J. Hanratty, 1997: Interpretation of large-scale structures observed in a turbulent plane Couette flow. Int. J. Heat Fluid Flow, 18, 5569, https://doi.org/10.1016/S0142-727X(96)00138-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 1982: A relationship between wind stress and wave slope. J. Geophys. Res., 87, 19611967, https://doi.org/10.1029/JC087iC03p01961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., A. C. Haza, T. M. Özgökmen, M. G. Magaldi, and Z. D. Garraffo, 2010: Resolution dependent relative dispersion statistics in a hierarchy of ocean models. Ocean Modell., 31, 3650, https://doi.org/10.1016/j.ocemod.2009.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2008: Turbulent Flows. 5th ed. Cambridge University Press, 771 pp.

  • Richardson, L. F., 1926: Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. London, 110A, 709–737, https://doi.org/10.1098/rspa.1926.0043.

    • Crossref
    • Export Citation
  • Rossby, T., 2007: Evolution of Lagrangian methods in oceanography. Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics, A. Griffa et al., Eds., Cambridge University Press, 1–38, http://assets.cambridge.org/97805218/70184/excerpt/9780521870184_excerpt.pdf.

    • Crossref
    • Export Citation
  • Saffman, P. G., 1962: The effect of wind shear on horizontal spread from an instantaneous ground source. Quart. J. Roy. Meteor. Soc., 88, 382393, https://doi.org/10.1002/qj.49708837803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salazar, J. P., and L. R. Collins, 2009: Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech., 41, 405432, https://doi.org/10.1146/annurev.fluid.40.111406.102224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarmiento, J. L., and N. Gruber, 2002: Sinks for anthropogenic carbon. Phys. Today, 55, 3036, https://doi.org/10.1063/1.1510279.

  • Sawford, B., 2001: Turbulent relative dispersion. Annu. Rev. Fluid Mech., 33, 289317, https://doi.org/10.1146/annurev.fluid.33.1.289.

  • Skyllingstad, E., 2003: The effects of Langmuir circulation on buoyant particles. Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation, P. G. Strutton and L. Seuront, Eds., CRC Press, 445–457, https://doi.org/10.1201/9780203489550.ch28.

    • Crossref
    • Export Citation
  • Skyllingstad, E., and D. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 85018522, https://doi.org/10.1029/94JC03202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E., W. D. Smyth, J. Moun, and H. Wijesekera, 1999: Upper-ocean turbulence during a westerly wind burst: A comparison of large-eddy simulation results and microstructure measurements. J. Phys. Oceanogr., 29, 528, https://doi.org/10.1175/1520-0485(1999)029<0005:UOTDAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942, https://doi.org/10.1146/annurev-fluid-121108-145541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and J. C. Moeng, 1994: A sub-grid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276, https://doi.org/10.1007/BF00713741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations. J. Fluid Mech., 507, 143174, https://doi.org/10.1017/S0022112004008882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452, https://doi.org/10.1017/S002211200700897X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1922: Diffusion by continuous movements. Proc. London Math. Soc., s2-20, 96–212, https://doi.org/10.1112/plms/s2-20.1.196.

    • Crossref
    • Export Citation
  • Taylor, G. I., 1953: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. London, 219A, 186–203, https://doi.org/10.1098/rspa.1953.0139.

    • Crossref
    • Export Citation
  • Tejada-Martinez, A. E., and C. E. Grosch, 2007: Langmuir turbulence in shallow water. Part 2. Large-eddy simulation. J. Fluid Mech., 576, 63108, https://doi.org/10.1017/S0022112006004587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 320 pp.

    • Crossref
    • Export Citation
  • Terray, E., M. Donelan, Y. Agrawal, W. Drennan, K. Kahma, A. Williams, P. Hwang, and S. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, https://doi.org/10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1987: Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech., 180, 529556, https://doi.org/10.1017/S0022112087001940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1982: On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air-sea gas transfer. Philos. Trans. Roy. Soc. London, 304A, 155210, https://doi.org/10.1098/rsta.1982.0011.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2004: Langmuir circulation. Annu. Rev. Fluid Mech., 36, 5579, https://doi.org/10.1146/annurev.fluid.36.052203.071431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., W. E. Asher, D. T. Ho, C. Sweeney, and W. R. McGillis, 2009: Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci., 1, 213244, https://doi.org/10.1146/annurev.marine.010908.163742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weil, J. C., P. P. Sullivan, and C.-H. Moeng, 2004: The use of large-eddy simulations in Lagrangian particle dispersion models. J. Atmos. Sci., 61, 28772887, https://doi.org/10.1175/JAS-3302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., M. Chamecki, and C. Meneveau, 2014: Inhibition of oil plume dilution in Langmuir ocean circulation. Geophys. Res. Lett., 41, 16321638, https://doi.org/10.1002/2014GL059284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeung, P. K., 2002: Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech., 34, 115142, https://doi.org/10.1146/annurev.fluid.34.082101.170725.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 684 141 10
PDF Downloads 440 111 11