Jet Instability over Smooth, Corrugated, and Realistic Bathymetry

J. H. LaCasce Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by J. H. LaCasce in
Current site
Google Scholar
PubMed
Close
,
J. Escartin Institut de Physique du Globe de Paris, Paris, France

Search for other papers by J. Escartin in
Current site
Google Scholar
PubMed
Close
,
Eric. P. Chassignet Florida State University, Tallahassee, Florida

Search for other papers by Eric. P. Chassignet in
Current site
Google Scholar
PubMed
Close
, and
Xiaobiao Xu Florida State University, Tallahassee, Florida

Search for other papers by Xiaobiao Xu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The stability of a horizontally and vertically sheared surface jet is examined, with a focus on the vertical structure of the resultant eddies. Over a flat bottom, the instability is mixed baroclinic/barotropic, producing strong eddies at depth that are characteristically shifted downstream relative to the surface eddies. Baroclinic instability is suppressed over a large slope for retrograde jets (with a flow antiparallel to topographic wave propagation) and to a lesser extent for prograde jets (with flow parallel to topographic wave propagation), as seen previously. In such cases, barotropic (lateral) instability dominates if the jet is sufficiently narrow. This yields surface eddies whose size is independent of the slope but proportional to the jet width. Deep eddies still form, forced by interfacial motion associated with the surface eddies, but they are weaker than under baroclinic instability and are vertically aligned with the surface eddies. A sinusoidal ridge acts similarly, suppressing baroclinic instability and favoring lateral instability in the upper layer. A ridge with a 1-km wavelength and an amplitude of roughly 10 m is sufficient to suppress baroclinic instability. Surveys of bottom roughness from bathymetry acquired with shipboard multibeam echo sounding reveal that such heights are common beneath the Kuroshio, the Antarctic Circumpolar Current, and, to a lesser extent, the Gulf Stream. Consistent with this, vorticity and velocity cross sections from a 1/50° HYCOM simulation suggest that Gulf Stream eddies are vertically aligned, as in the linear stability calculations with strong topography. Thus, lateral instability may be more common than previously thought, owing to topography hindering vertical energy transfer.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. H. LaCasce, j.h.lacasce@geo.uio.no

Abstract

The stability of a horizontally and vertically sheared surface jet is examined, with a focus on the vertical structure of the resultant eddies. Over a flat bottom, the instability is mixed baroclinic/barotropic, producing strong eddies at depth that are characteristically shifted downstream relative to the surface eddies. Baroclinic instability is suppressed over a large slope for retrograde jets (with a flow antiparallel to topographic wave propagation) and to a lesser extent for prograde jets (with flow parallel to topographic wave propagation), as seen previously. In such cases, barotropic (lateral) instability dominates if the jet is sufficiently narrow. This yields surface eddies whose size is independent of the slope but proportional to the jet width. Deep eddies still form, forced by interfacial motion associated with the surface eddies, but they are weaker than under baroclinic instability and are vertically aligned with the surface eddies. A sinusoidal ridge acts similarly, suppressing baroclinic instability and favoring lateral instability in the upper layer. A ridge with a 1-km wavelength and an amplitude of roughly 10 m is sufficient to suppress baroclinic instability. Surveys of bottom roughness from bathymetry acquired with shipboard multibeam echo sounding reveal that such heights are common beneath the Kuroshio, the Antarctic Circumpolar Current, and, to a lesser extent, the Gulf Stream. Consistent with this, vorticity and velocity cross sections from a 1/50° HYCOM simulation suggest that Gulf Stream eddies are vertically aligned, as in the linear stability calculations with strong topography. Thus, lateral instability may be more common than previously thought, owing to topography hindering vertical energy transfer.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. H. LaCasce, j.h.lacasce@geo.uio.no
Save
  • Ambe, D., S. Imawaki, H. Uccida, and K. Ichikawa, 2004: Estimating the Kuroshio axis south of Japan using combination of satellite altimetry and drifting buoys. J. Oceanogr., 60, 375382, https://doi.org/10.1023/B:JOCE.0000038343.31468.fe.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andres, M., J. Toole, D. Torres, W. Smethie, T. Joyce, and R. Curry, 2016: Stirring by deep cyclones and the evolution of Denmark Strait Overflow Water observed at line W. Deep-Sea Res. I, 109, 1026, https://doi.org/10.1016/j.dsr.2015.12.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benilov, E. S., 2001: Baroclinic instability of two-layer flows over one-dimensional bottom topography. J. Phys. Oceanogr., 31, 20192025, https://doi.org/10.1175/1520-0485(2001)031<2019:BIOTLF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bickley, W., 1937: The plane jet. London Edinburgh Dublin Philos. Mag. J. Sci., 23, 727731, https://doi.org/10.1080/14786443708561847.

  • Bishop, S., D. Watts, and K. Donohue, 2013: Divergent eddy heat fluxes in the Kuroshio extension at 144°–148°E. Part I: Mean structure. J. Phys. Oceanogr., 43, 15331550, https://doi.org/10.1175/JPO-D-12-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, https://doi.org/10.1016/S1463-5003(01)00012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumsack, S. L., and P. J. Gierasch, 1972: The effects of topography on baroclinic instability. J. Atmos. Sci., 29, 10811089, https://doi.org/10.1175/1520-0469(1972)029<1081:MTEOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bobrovich, A., and G. Reznik, 1999: Planetary waves in a stratified ocean of variable depth. Part 2. Continuously stratified ocean. J. Fluid Mech., 388, 147169, https://doi.org/10.1017/S0022112099004863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchut, F., B. Ribstein, and V. Zeitlin, 2011: Inertial, barotropic, and baroclinic instabilities of the Bickley jet in two-layer rotating shallow water model. Phys. Fluids, 23, 126601, https://doi.org/10.1063/1.3661995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bower, A., and N. Hogg, 1996: Structure of the Gulf Stream and its recirculations at 55°W. J. Phys. Oceanogr., 26, 10021022, https://doi.org/10.1175/1520-0485(1996)026<1002:SOTGSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K., 2012: Baroclinic instability of an idealized tidal mixing front. J. Mar. Res., 70, 661688, https://doi.org/10.1357/002224012805262716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., R. Ferrari, J. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence. Nat. Commun., 6, 6862, https://doi.org/10.1038/ncomms7862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172, https://doi.org/10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and G. R. Flierl, 1981: Oceanic analogues of large-scale atmospheric motions. Evolution of Physical Oceanography, C. Wunsch and B. Warren, Eds., MIT Press, 266–290.

  • Chassignet, E., and X. Xu, 2017: Impact of horizontal resolution (1/12° to 1/50°) on Gulf Stream separation, penetration, and variability. J. Phys. Oceanogr., 47, 19992021, https://doi.org/10.1175/JPO-D-17-0031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chassignet, E., L. T. Smith, G. R. Halliwell, and R. Bleck, 2003: North Atlantic simulation with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference density, and thermobaricity. J. Phys. Oceanogr., 33, 25042526, https://doi.org/10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D., R. Deszoeke, M. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, C., and I. Kamenkovich, 2013: Effects of topography on baroclinic instability. J. Phys. Oceanogr., 43, 790804, https://doi.org/10.1175/JPO-D-12-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M., and D. Watts, 1996: Eddy–mean flow interaction in the Gulf Stream at 68°W. Part I: Eddy energetics. J. Phys. Oceanogr., 26, 21072131, https://doi.org/10.1175/1520-0485(1996)026<2107:EFIITG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and J. Beckers, 2011: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic Press, 875 pp.

    • Crossref
    • Export Citation
  • de La Lama, M. S., J. H. LaCasce, and H. Fuhr, 2016: The vertical structure of ocean eddies. Dyn. Stat. Climate Syst., 1, DZW001, https://doi.org/10.1093/climsys/dzw001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W., and J. Bane, 1989: Gulf Stream dynamics. Part II: Eddy energetics at 73°W. J. Phys. Oceanogr., 19, 15741587, https://doi.org/10.1175/1520-0485(1989)019<1574:GSDPIE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dubois, N., and N. C. Mitchell, 2012: Large-scale sediment redistribution on the equatorial Pacific seafloor. Deep-Sea Res. I, 69, 5161, https://doi.org/10.1016/j.dsr.2012.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Flierl, G. R., 1999: Thin jet and contour dynamics models of Gulf Stream meandering. Dyn. Atmos. Oceans, 29, 189215, https://doi.org/10.1016/S0377-0265(99)00006-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flierl, G. R., P. Malanotte-Rizzoli, and N. Zabusky, 1987: Nonlinear waves and coherent vortex structures in barotropic beta-plane jets. J. Phys. Oceanogr., 17, 14081438, https://doi.org/10.1175/1520-0485(1987)017<1408:NWACVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foldvik, A., K. Aagaard, and T. Tørresen, 1988: On the velocity field of the East Greenland Current. Deep-Sea Res., 35A, 13351354, https://doi.org/10.1016/0198-0149(88)90086-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and J. Pedlosky, 2003: On the indeterminacy of rotational and divergent eddy fluxes. J. Phys. Oceanogr., 33, 478483, https://doi.org/10.1175/1520-0485(2003)033<0478:OTIORA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., J. Green, and A. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res. Oceanogr. Abstr., 21, 499528, https://doi.org/10.1016/0011-7471(74)90010-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, J., and B. Arbic, 2010: Global prediction of abyssal hill roughness statistics for use in ocean models from digital maps of paleo-spreading rate, paleo-ridge orientation, and sediment thickness. Ocean Modell., 32, 3643, https://doi.org/10.1016/j.ocemod.2009.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., and V. Zeitlin, 2014: Instabilities of shallow-water flows with vertical shear in the rotating annulus. Modeling Atmospheric and Oceanic Fluid Flows: Insights from Laboratory Experiments, T. von Larcher and P. D. Williams, Eds., Amer. Geophys. Union, 119–138.

    • Crossref
    • Export Citation
  • Halkin, D., and T. Rossby, 1985: The structure and transport of the Gulf Stream at 73°W. J. Phys. Oceanogr., 15, 14391452, https://doi.org/10.1175/1520-0485(1985)015<1439:TSATOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, M. M., 1986: Assessing the energetics and dynamics of the Gulf Stream at 68W from moored current measurements. J. Mar. Res., 44, 423443, https://doi.org/10.1357/002224086788403033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, J. E., 1975: Baroclinic instability over a slope. Part 1: Linear theory. J. Phys. Oceanogr., 5, 625633, https://doi.org/10.1175/1520-0485(1975)005<0625:BIOASP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herring, J. R., 1977: On the statistical theory of two-dimensional topographic turbulence. J. Atmos. Sci., 34, 17311750, https://doi.org/10.1175/1520-0469(1977)034<1731:OTSTOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., 1981: Topographic waves along 70°W an the continental rise. J. Mar. Res., 39, 627649.

  • Hogg, N. G., 1985: Evidence for baroclinic instability in the Gulf Stream recirculation. Prog. Oceanogr., 14, 209229, https://doi.org/10.1016/0079-6611(85)90012-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 553 pp.

  • Ikeda, M., 1983: Linear instability of a current flowing along a bottom slope using a three-layer model. J. Phys. Oceanogr., 13, 208223, https://doi.org/10.1175/1520-0485(1983)013<0208:LIOACF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isachsen, P., 2011: Baroclinic instability and eddy tracer transport across sloping bottom topography: How well does a modified Eady model do in primitive equation simulations? Ocean Modell., 39, 183199, https://doi.org/10.1016/j.ocemod.2010.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaroslow, G., and B. Tucholke, 1994: Mesozoic-Cenozoic sedimentation in the Kane Fracture Zone, western North Atlantic, and uplift history of the Bermuda Rise. Geol. Soc. Amer. Bull., 106, 319337, https://doi.org/10.1130/0016-7606(1994)106<0319:MCSITK>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, W., T. Shay, J. Bane, and D. Watts, 1995: Gulf Stream structure, transport, and recirculation near 68°W. J. Geophys. Res., 100, 817838, https://doi.org/10.1029/94JC02497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaneko, S., S. Mizuno, W. Koterayama, and R. Gordon, 1992: Cross-stream velocity structures and their downstream variation of the Kuroshio around Japan. Deep-Sea Res., 39A, 15831594, https://doi.org/10.1016/0198-0149(92)90049-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H., 1949: Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteor., 6, 105122, https://doi.org/10.1175/1520-0469(1949)006<0105:DIOTDN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2005: Statistics of low frequency currents over the western Norwegian shelf and slope I: Current meters. Ocean Dyn., 55, 213221, https://doi.org/10.1007/s10236-005-0021-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2017: The prevalence of oceanic surface modes. Geophys. Res. Lett., 44, 11 09711 105, https://doi.org/10.1002/2017GL075430.

  • Lambaerts, J., G. Lapeyre, and V. Zeitlin, 2012: Moist versus dry baroclinic instability in a simplified two-layer atmospheric model with condensation and latent heat release. J. Atmos. Sci., 69, 14051426, https://doi.org/10.1175/JAS-D-11-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenn, Y., T. Chereskin, J. Sprintall, and E. Firing, 2007: Mean jets, mesoscale variability and eddy momentum fluxes in the surface layer of the Antarctic Circumpolar Current in Drake Passage. J. Mar. Res., 65, 2758, https://doi.org/10.1357/002224007780388694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luyten, J., 1977: Scales of motion in the deep Gulf Stream and across the continental rise. J. Mar. Res., 35, 4974.

  • Macdonald, K., P. Fox, R. Alexander, R. Pockalny, and P. Gente, 1996: Volcanic growth faults and the origin of Pacific abyssal hills. Nature, 380, 125129, https://doi.org/10.1038/380125a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11, 16771680, https://doi.org/10.1175/1520-0485(1981)011<1677:ANORAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslowe, S., 1991: Barotropic instability of the Bickley jet. J. Fluid Mech., 229, 417426, https://doi.org/10.1017/S0022112091003087.

  • Mechoso, C., 1980: Baroclinic instability of flows along sloping boundaries. J. Atmos. Sci., 37, 13931399, https://doi.org/10.1175/1520-0469(1980)037<1393:BIOFAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechoso, C., and D. M. Sinton, 1981: Instability of baroclinic flows with horizontal shear along topography. J. Phys. Oceanogr., 11, 813821, https://doi.org/10.1175/1520-0485(1981)011<0813:IOBFWH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menard, H., and J. Mammerickx, 1967: Abyssal hills, magnetic anomalies, and the East Pacific Rise. Earth Planet. Sci. Lett., 2, 465472, https://doi.org/10.1016/0012-821X(67)90191-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, J. K., M. R. Abbot, and J. G. Richman, 1999: Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data. J. Geophys. Res., 104, 30593073, https://doi.org/10.1029/1998JC900032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mysak, L., and F. Schott, 1977: Evidence for baroclinic instability of the Norwegian Current. J. Geophys. Res., 82, 20872095, https://doi.org/10.1029/JC082i015p02087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olive, J.-A., M. Behn, G. Ito, W. Buck, J. Escartin, and S. Howell, 2015: Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply. Science, 350, 310313, https://doi.org/10.1126/science.aad0715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1969: The influence of bottom topography on the stability of jets in a baroclinic fluid. J. Atmos. Sci., 26, 12161232, https://doi.org/10.1175/1520-0469(1969)026<1216:TIOBTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1964: The stability of currents in the atmosphere and the ocean: Part I. J. Atmos. Sci., 21, 201219, https://doi.org/10.1175/1520-0469(1964)021<0201:TSOCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 728 pp.

    • Crossref
    • Export Citation
  • Phillips, H. E., and S. R. Rintoul, 2000: Eddy variability and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 30, 30503076, https://doi.org/10.1175/1520-0485(2000)030<3050:EVAEFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1954: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 6, 273286, https://doi.org/10.1111/j.2153-3490.1954.tb01123.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pichevin, T., 1998: Baroclinic instability in a three layer flow: A wave approach. Dyn. Atmos. Oceans, 28, 179204, https://doi.org/10.1016/S0377-0265(98)00049-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickart, R., 1995: Gulf Stream–generated topographic Rossby waves. J. Phys. Oceanogr., 25, 574586, https://doi.org/10.1175/1520-0485(1995)025<0574:GSTRW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulin, F., and G. Flierl, 2003: The nonlinear evolution of barotropically unstable jets. J. Phys. Oceanogr., 33, 21732192, https://doi.org/10.1175/1520-0485(2003)033<2173:TNEOBU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., M. J. Molemaker, J. Gula, S. Masson, and J. C. McWilliams, 2016: Control and stabilization of the Gulf Stream by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 34393453, https://doi.org/10.1175/JPO-D-16-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1970: Edge-, bottom-, and Rossby waves in a rotating stratified fluid. Geophys. Astrophys. Fluid Dyn., 1, 273302, https://doi.org/10.1080/03091927009365776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1977: The dynamics of unsteady currents. Marine Modeling, C. Wunsch et al., Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 6, John Wiley and Sons, 189–318.

  • Ribstein, B., and V. Zeitlin, 2013: Instabilities of coupled density fronts and their nonlinear evolution in the two-layer rotating shallow-water model: Influence of the lower layer and of the topography. J. Fluid Mech., 716, 528565, https://doi.org/10.1017/jfm.2012.556.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, M. J., M. Wimbush, and L. Mayer, 1981: Exceptionally strong near-bottom flows on the continental rise of Nova Scotia. Science, 213, 887888, https://doi.org/10.1126/science.213.4510.887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, P., 1983: Eddy kinetic energy in the North Atlantic from surface drifters. J. Geophys. Res., 88, 43554367, https://doi.org/10.1029/JC088iC07p04355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, P., 1985: Average velocity and transport of the Gulf Stream near 55W. J. Mar. Res., 43, 83111, https://doi.org/10.1357/002224085788437343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rona, P., R. Harbison, and S. Bush, 1974: Abyssal hills of the eastern central North Atlantic. Mar. Geol., 16, 275292, https://doi.org/10.1016/0025-3227(74)90069-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, W., and Coauthors, 2009: Global multi-resolution topography synthesis. Geochem. Geophys. Geosyst., 10, Q03014, https://doi.org/10.1029/2008GC002332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1992: Surface-intensified Rossby waves over rough topography. J. Mar. Res., 50, 367384, https://doi.org/10.1357/002224092784797593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savidge, D., and J. Bane, 1999a: Cyclogenesis in the deep ocean beneath the Gulf Stream: 1. Description. J. Geophys. Res., 104, 18 11118 126, https://doi.org/10.1029/1999JC900132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savidge, D., and J. Bane, 1999b: Cyclogenesis in the deep ocean beneath the Gulf Stream: 2. Dynamics. J. Geophys. Res., 104, 18 12718 140, https://doi.org/10.1029/1999JC900131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitz, J. J., 1984: Abyssal eddy kinetic energy in the North Atlantic. J. Mar. Res., 42, 509536, https://doi.org/10.1357/002224084788505933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semtner, A., and Y. Mintz, 1977: Numerical simulation of the Gulf Stream and mid-ocean eddies. J. Phys. Oceanogr., 7, 208230, https://doi.org/10.1175/1520-0485(1977)007<0208:NSOTGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res., 65, 655683, https://doi.org/10.1357/002224007783649484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, C. M., 1976: The influence of meridionally sloping topography on baroclinic instability and its implications for macroclimate. J. Atmos. Sci., 33, 592601, https://doi.org/10.1175/1520-0469(1976)033<0592:TIOMST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L., J. Taylor, R. Ferrari, and T. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R., and J. Luyten, 1976: Evidence for bottom-trapped topographic Rossby waves from single moorings. Deep-Sea Res., 23, 629635, https://doi.org/10.1016/0011-7471(76)90005-X.

    • Search Google Scholar
    • Export Citation
  • Trefethen, L. N., 2001: Spectral Methods in MATLAB. SIAM, 184 pp.

    • Crossref
    • Export Citation
  • Tulloch, R., J. Marshall, C. Hill, and K. Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, https://doi.org/10.1175/2011JPO4404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Usui, N., H. Tsujino, H. Nakano, and Y. Fujii, 2008: Formation process of the Kuroshio large meander in 2004. J. Geophys. Res., 113, C08047, https://doi.org/10.1029/2007JC004675.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamental and Large-Scale Circulation. 1st ed. Cambridge University Press, 745 pp.

    • Crossref
    • Export Citation
  • Vanneste, J., 2003: Nonlinear dynamics over rough topography: Homogeneous and stratified quasi-geostrophic theory. J. Fluid Mech., 474, 299318, https://doi.org/10.1017/S0022112002002707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and A. Stewart, 2018: Eddy dynamics over continental slopes under retrograde winds: Insights from a model inter-comparison. Ocean Modell., 121, 118, https://doi.org/10.1016/j.ocemod.2017.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watts, D., K. Tracey, K. Donohue, and T. Chereskin, 2016: Estimates of eddy heat flux crossing the Antarctic Circumpolar Current from observations in Drake Passage. J. Phys. Oceanogr., 46, 21032122, https://doi.org/10.1175/JPO-D-16-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welsh, E. B., N. G. Hogg, and R. M. Hendry, 1991: The relationship of low-frequency deep variability near the HEBBLE site to Gulf Stream fluctuations. Mar. Geol., 99, 303317, https://doi.org/10.1016/0025-3227(91)90046-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wessel, P., 2001: Global distribution of seamounts inferred from gridded Geosat/ERS-1 altimetry. J. Geophys. Res., 106, 19 43119 441, https://doi.org/10.1029/2000JB000083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodgate, R. A., E. Fahrbach, and G. Rohardt, 1999: Structure and transports of the East Greenland Current at 75°N from moored current meters. J. Geophys. Res., 104, 18 05918 072, https://doi.org/10.1029/1999JC900146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 17701794, https://doi.org/10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 610 240 32
PDF Downloads 536 160 18