Scattering of Low-Mode Internal Tides at a Continental Shelf

Shuya Wang Key Laboratory of Physical Oceanography, Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Shuya Wang in
Current site
Google Scholar
PubMed
Close
,
Xu Chen Key Laboratory of Physical Oceanography, Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Xu Chen in
Current site
Google Scholar
PubMed
Close
,
Jinhu Wang Key Laboratory of Physical Oceanography, Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Jinhu Wang in
Current site
Google Scholar
PubMed
Close
,
Qun Li Polar Research Institute of China, State Oceanic Administration, Shanghai, China

Search for other papers by Qun Li in
Current site
Google Scholar
PubMed
Close
,
Jing Meng College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

Search for other papers by Jing Meng in
Current site
Google Scholar
PubMed
Close
, and
Yang Xu Key Laboratory of Physical Oceanography, Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Yang Xu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A series of laboratory experiments are performed to investigate the scattering of low-mode internal tides at a continental shelf by varying the criticality parameter and normalized topographic height independently. A wide-range synchronized particle image velocimetery (PIV) measures the velocity fields of the internal tides. Beams radiate from both the shelf break and the bottom of the slope, indicating that energy transfers from low modes to higher modes, which is verified by the modal decomposition. Energy is also transferred to higher harmonics, whose amplitude is less than a quarter of that of the first harmonic. The fraction of energy transmitted onshore and dissipated on the topography is determined by both the criticality parameter and the normalized topographic height, while the fraction of energy reflected offshore is dependent only on the criticality parameter. Mean flow with a shear structure induced by internal tides is observed along the continental slope, with horizontal velocity generally half of the amplitude of the incident waves. A net onshore transport along the slope is caused by the onshore current with larger thickness. The strength of the mean flow is dependent on both the criticality parameter and the normalized topographic height, and a linear relationship between the energy of the mean flow and the vertical shear of internal tides is revealed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xu Chen, chenxu001@ouc.edu.cn

Abstract

A series of laboratory experiments are performed to investigate the scattering of low-mode internal tides at a continental shelf by varying the criticality parameter and normalized topographic height independently. A wide-range synchronized particle image velocimetery (PIV) measures the velocity fields of the internal tides. Beams radiate from both the shelf break and the bottom of the slope, indicating that energy transfers from low modes to higher modes, which is verified by the modal decomposition. Energy is also transferred to higher harmonics, whose amplitude is less than a quarter of that of the first harmonic. The fraction of energy transmitted onshore and dissipated on the topography is determined by both the criticality parameter and the normalized topographic height, while the fraction of energy reflected offshore is dependent only on the criticality parameter. Mean flow with a shear structure induced by internal tides is observed along the continental slope, with horizontal velocity generally half of the amplitude of the incident waves. A net onshore transport along the slope is caused by the onshore current with larger thickness. The strength of the mean flow is dependent on both the criticality parameter and the normalized topographic height, and a linear relationship between the energy of the mean flow and the vertical shear of internal tides is revealed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xu Chen, chenxu001@ouc.edu.cn
Save
  • Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159162, https://doi.org/10.1038/nature01628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordes, G., A. Venaille, S. Joubaud, P. Odier, and T. Dauxois, 2012: Experimental observation of a strong mean flow induced by internal gravity waves. Phys. Fluids, 24, 086602, https://doi.org/10.1063/1.4745880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cacchione, D. A., and C. Wunsch, 1974: Experimental study of internal waves over a slope. J. Fluid Mech., 66, 223239, https://doi.org/10.1017/S0022112074000164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cacchione, D. A., L. F. Pratson, and A. S. Ogston, 2002: The shaping of continental slopes by internal tides. Science, 296, 724727, https://doi.org/10.1126/science.1069803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, A. Z., B. T. Li, and X. Q. Lv, 2015: Extraction of internal tidal currents and reconstruction of full-depth tidal currents from mooring observations. J. Atmos. Oceanic Technol., 32, 14141424, https://doi.org/10.1175/JTECH-D-14-00221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, M. H., R. C. Lien, T. Y. Tang, E. A. D’Asaro, and Y. J. Yang, 2006: Energy flux of nonlinear internal waves in northern South China Sea. Geophys. Res. Lett., 33, L03607, https://doi.org/10.1029/2005GL025196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalziel, S. B., G. O. Hughes, and B. R. Sutherland, 2000: Whole-field density measurements by ‘synthetic Schlieren.’ Exp. Fluids, 28, 322335, https://doi.org/10.1007/s003480050391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dalziel, S. B., M. Carr, J. K. Sveen, and P. A. Davies, 2007: Simultaneous synthetic Schlieren and PIV measurements for internal solitary waves. Meas. Sci. Technol., 18, 533547, https://doi.org/10.1088/0957-0233/18/3/001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dauxois, T., A. Didier, and E. Falcon, 2004: Observation of near-critical reflection of internal waves in a stably stratified fluid. Phys. Fluids, 16, 1936, https://doi.org/10.1063/1.1711814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duda, T. F., and L. Rainville, 2008: Diurnal and semidiurnal internal tide energy flux at a continental slope in the South China Sea. J. Geophys. Res., 113, C03025, https://doi.org/10.1029/2007JC004418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 2003: Internal tides and ocean mixing. Science, 301, 18581859, https://doi.org/10.1126/science.1090002.

  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787, https://doi.org/10.1146/annurev.fluid.39.050905.110227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerkema, T., and J. T. F. Zimmerman, 2008: An introduction to internal waves. Royal NIOZ Lecture Notes, 207 pp.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gostiaux, L., T. Dauxois, H. Didelle, J. Sommeria, and S. Viboud, 2006: Quantitative laboratory observations of internal wave reflection on ascending slopes. Phys. Fluids, 18, 056602, https://doi.org/10.1063/1.2197528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grisouard, N., M. Leclair, L. Gostiaux, and C. Staquet, 2013: Large scale energy transfer from an internal gravity wave reflecting on a simple slope. Procedia IUTAM, 8, 119128, https://doi.org/10.1016/j.piutam.2013.04.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, R. A., J. M. Huthnance, and R. G. Williams, 2013: Internal wave reflection on shelf slopes with depth-varying stratification. J. Phys. Oceanogr., 43, 248258, https://doi.org/10.1175/JPO-D-11-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, D. F., 2002: General density gradients in general domains: The “two-tank” method revisited. Exp. Fluids, 32, 434440, https://doi.org/10.1007/s00348-001-0376-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inall, M. E., 2009: Internal wave induced dispersion and mixing on a sloping boundary. Geophys. Res. Lett., 36, L05604, https://doi.org/10.1029/2008GL036849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivey, G. N., K. B. Winters, and I. P. D. De Silva, 2000: Turbulent mixing in a sloping benthic boundary layer energized by internal waves. J. Fluid Mech., 418, 5976, https://doi.org/10.1017/S0022112000008788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, S., D. L. Rudnick, and S. M. Kelly, 2015: Standing internal tides in the Tasman Sea observed by gliders. J. Phys. Oceanogr., 45, 27152737, https://doi.org/10.1175/JPO-D-15-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., N. L. Jones, and J. D. Nash, 2013a: A coupled model for Laplace’s tidal equations in a fluid with one horizontal dimension and variable depth. J. Phys. Oceanogr., 43, 17801797, https://doi.org/10.1175/JPO-D-12-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., N. L. Jones, J. D. Nash, and A. F. Waterhouse, 2013b: The geography of semidiurnal mode-1 internal-tide energy loss. Geophys. Res. Lett., 40, 46894693, https://doi.org/10.1002/grl.50872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. H. Alford, R. Pinkel, R. C. Lien, Y. J. Yang, and T. Y. Tang, 2011: The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr., 41, 926945, https://doi.org/10.1175/2010JPO4500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., H. L. Simmons, D. Braznikov, S. Kelly, J. A. Mackinnon, M. H. Alford, R. Pinkel, and J. D. Nash, 2016: Reflection of linear internal tides from realistic topography: The Tasman continental slope. J. Phys. Oceanogr., 46, 33213337, https://doi.org/10.1175/JPO-D-16-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2017: The internal-wave-driven meridional overturning circulation. J. Phys. Oceanogr., 47, 26732689, https://doi.org/10.1175/JPO-D-16-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leclair, M., N. Grisouard, L. Gostiaux, C. Staquet, and F. Auclair, 2011: Reflexion of a plane wave onto a slope and wave-induced mean flow. Proc. Seventh Int. Symp. on Stratified Flows, Rome, Italy, LEGI, 8 pp.

  • Legg, S., 2014: Scattering of low-mode internal waves at finite isolated topography. J. Phys. Oceanogr., 44, 359383, https://doi.org/10.1175/JPO-D-12-0241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., and A. Adcroft, 2003: Internal wave breaking at concave and convex continental slopes. J. Phys. Oceanogr., 33, 22242246, https://doi.org/10.1175/1520-0485(2003)033<2224:IWBACA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., and C. Wunsch, 2015: Note on the redistribution and dissipation of tidal energy over mid-ocean ridges. Tellus, 67A, 27385, https://doi.org/10.3402/tellusa.v67.27385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, E. Kunze, S. M. Kelly, and J. D. Nash, 2011: Observations of internal tides on the Oregon continental slope. J. Phys. Oceanogr., 41, 17721794, https://doi.org/10.1175/2011JPO4581.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martini, K. I., M. H. Alford, E. Kunze, S. M. Kelly, and J. D. Nash, 2013: Internal bores and breaking internal tides on the Oregon continental slope. J. Phys. Oceanogr., 43, 120139, https://doi.org/10.1175/JPO-D-12-030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathur, M., G. S. Carter, and T. Peacock, 2014: Topographic scattering of the low-mode internal tide in the deep ocean. J. Geophys. Res. Oceans, 119, 21652182, https://doi.org/10.1002/2013JC009152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and R. Ferrari, 2017: Abyssal upwelling and downwelling driven by near-boundary mixing. J. Phys. Oceanogr., 47, 261283, https://doi.org/10.1175/JPO-D-16-0082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mercier, M. J., M. Mathur, L. Gostiaux, T. Gerkema, J. M. Magalhães, J. C. B. Da Silva, and T. Dauxois, 2012: Soliton generation by internal tidal beams impinging on a pycnocline: Laboratory experiments. J. Fluid Mech., 704, 3760, https://doi.org/10.1017/jfm.2012.191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., and X. Liu, 2000: Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies. J. Phys. Oceanogr., 30, 532549, https://doi.org/10.1175/1520-0485(2000)030<0532:SOIWAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakayama, K., and J. Imberger, 2010: Residual circulation due to internal waves shoaling on a slope. Limnol. Oceanogr., 55, 10091023, https://doi.org/10.4319/lo.2010.55.3.1009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakayama, K., T. Shintani, K. Kokubo, T. Kakinuma, Y. Maruya, K. Komai, and T. Okada, 2012: Residual currents over a uniform slope due to breaking of internal waves in a two-layer system. J. Geophys. Res., 117, C10002, https://doi.org/10.1029/2012JC008155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22, 15511570, https://doi.org/10.1175/JTECH1784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, https://doi.org/10.1002/grl.50542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peacock, T., M. J. Mercier, H. Didelle, S. Viboud, and T. Dauxois, 2009: A laboratory study of low-mode internal tide scattering by finite-amplitude topography. Phys. Fluids, 21, 121702, https://doi.org/10.1063/1.3267096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. Cambridge University Press, 344 pp.

  • Pickering, A., and M. H. Alford, 2012: Velocity structure of internal tide beams emanating from Kaena Ridge, Hawaii. J. Phys. Oceanogr., 42, 10391044, https://doi.org/10.1175/JPO-D-12-018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raja, K. J., 2018: Internal waves and mean flow in the presence of topography. Ph.D. dissertation, Université Grenoble Alpes, 148 pp.

  • Ray, R. D., and G. T. Mitchum, 1996: Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett., 23, 21012104, https://doi.org/10.1029/96GL02050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodenborn, B., D. Kiefer, H. P. Zhang, and H. L. Swinney, 2011: Harmonic generation by reflecting internal waves. Phys. Fluids, 23, 026601, https://doi.org/10.1063/1.3553294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357, https://doi.org/10.1126/science.1085837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R. H., 2008: Introduction to Physical Oceanography. Texas A&M University, 352 pp.

  • Thielicke, W., and E. J. Stamhuis, 2014: PIVlab—Towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Software, 2, e30, https://doi.org/10.5334/jors.bl.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., and T. B. Benjamin, 1968: On the shape of progressive internal waves. Philos. Trans. Roy. Soc., 263A, 563614, https://doi.org/10.1098/rsta.1968.0033.

    • Search Google Scholar
    • Export Citation
  • Venayagamoorthy, S. K., and O. B. Fringer, 2006: Numerical simulations of the interaction of internal waves with a shelf break. Phys. Fluids, 18, 076603, https://doi.org/10.1063/1.2221863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., S. Wang, X. Chen, W. Wang, and Y. Xu, 2017: Three-dimensional evolution of internal waves reflected from a submarine seamount. Phys. Fluids, 29, 106601, https://doi.org/10.1063/1.4986167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., X. Chen, Q. Li, J. Wang, J. Meng, and M. Zhao, 2018a: Scattering of low-mode internal tides at different shaped continental shelves. Cont. Shelf Res., 169, 1724, https://doi.org/10.1016/j.csr.2018.09.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., J. Wang, X. Chen, J. Meng, and H. Wang, 2018b: Density perturbation and energy flux of internal waves from velocity data. J. Ocean Univ. China, 17, 727732, https://doi.org/10.1007/s11802-018-3653-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., X. Chen, and W. Jiang, 2012: Laboratory experiments on the generation of internal waves on two kinds of continental margin. Geophys. Res. Lett., 39, L04602, https://doi.org/10.1029/2011GL049993.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., 2017: The global mode-1 S2 internal tide. J. Geophys. Res. Oceans, 122, 87948812, https://doi.org/10.1002/2017JC013112.

  • Zhao, Z., M. H. Alford, J. A. Mackinnon, and R. Pinkel, 2010: Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge. J. Phys. Oceanogr., 40, 713736, https://doi.org/10.1175/2009JPO4207.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. H. Alford, J. B. Girton, L. Rainville, and H. L. Simmons, 2016: Global observations of open-ocean mode-1 M2 internal tides. J. Phys. Oceanogr., 46, 16571684, https://doi.org/10.1175/JPO-D-15-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 343 107 9
PDF Downloads 275 79 1