Reconstruction of Submesoscale Velocity Field from Surface Drifters

Rafael C. Gonçalves Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida

Search for other papers by Rafael C. Gonçalves in
Current site
Google Scholar
PubMed
Close
,
Mohamed Iskandarani Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida

Search for other papers by Mohamed Iskandarani in
Current site
Google Scholar
PubMed
Close
,
Tamay Özgökmen Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida

Search for other papers by Tamay Özgökmen in
Current site
Google Scholar
PubMed
Close
, and
W. Carlisle Thacker Miami, Florida

Search for other papers by W. Carlisle Thacker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The extensive drifter deployment during the Lagrangian Submesoscale Experiment (LASER) provided observations of the surface velocity field in the northern Gulf of Mexico with high resolution in space and time. Here, we estimate the submesoscale velocity field sampled by those drifters using a procedure that statistically interpolates these data both spatially and temporally. Because the spacing of the drifters evolves with the flow, causing the resolution that they provide to vary in space and time, it is important to be able to characterize where and when the estimated velocity field is more or less accurate, which we do by providing fields of interpolation errors. Our interpolation uses a squared-exponential covariance function characterizing correlations in latitude, longitude, and time. Two novelties in our approach are 1) the use of two scales of variation per dimension in the covariance function and 2) allowing the data to determine these scales along with the appropriate amplitude of observational noise at these scales. We present the evolution of the reconstructed velocity field along with maps of relative vorticity, horizontal divergence, and lateral strain rate. The reconstructed velocity field exhibits horizontal length scales of 0.4–3.5 km and time scales of 0.6–3 h, and features with convergence up to 8 times the planetary vorticity f, lateral strain rate up to 10f, and relative vorticity up to 13f. Our results point to the existence of a vigorous and substantial ageostrophic circulation in the submesoscale range.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-18-0025.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rafael C. Gonçalves, rgoncalves@miami.edu

Abstract

The extensive drifter deployment during the Lagrangian Submesoscale Experiment (LASER) provided observations of the surface velocity field in the northern Gulf of Mexico with high resolution in space and time. Here, we estimate the submesoscale velocity field sampled by those drifters using a procedure that statistically interpolates these data both spatially and temporally. Because the spacing of the drifters evolves with the flow, causing the resolution that they provide to vary in space and time, it is important to be able to characterize where and when the estimated velocity field is more or less accurate, which we do by providing fields of interpolation errors. Our interpolation uses a squared-exponential covariance function characterizing correlations in latitude, longitude, and time. Two novelties in our approach are 1) the use of two scales of variation per dimension in the covariance function and 2) allowing the data to determine these scales along with the appropriate amplitude of observational noise at these scales. We present the evolution of the reconstructed velocity field along with maps of relative vorticity, horizontal divergence, and lateral strain rate. The reconstructed velocity field exhibits horizontal length scales of 0.4–3.5 km and time scales of 0.6–3 h, and features with convergence up to 8 times the planetary vorticity f, lateral strain rate up to 10f, and relative vorticity up to 13f. Our results point to the existence of a vigorous and substantial ageostrophic circulation in the submesoscale range.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-18-0025.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rafael C. Gonçalves, rgoncalves@miami.edu

Supplementary Materials

    • Supplemental Materials (PDF 36.51 KB)
Save
  • Bennett, A. F., 1984: Relative dispersion: Local and nonlocal dynamics. J. Atmos. Sci., 41, 18811886, https://doi.org/10.1175/1520-0469(1984)041<1881:RDLAND>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berta, M., A. Griffa, T. M. Özgökmen, and A. C. Poje, 2016: Submesoscale evolution of surface drifter triads in the Gulf of Mexico. Geophys. Res. Lett., 43, 11 75111 759, https://doi.org/10.1002/2016GL070357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., R. E. Davis, and C. B. Fandry, 1976: A technique for objective analysis and design of oceanographic experiment applied to MODE-73. Deep-Sea Res. Oceanogr. Abstr., 23, 559582, https://doi.org/10.1016/0011-7471(76)90001-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrd, R. H., P. Lu, J. Nocedal, and C. Zhu, 1995: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput., 16, 11901208, https://doi.org/10.1137/0916069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and F. Shchepetkin, 2008: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, https://doi.org/10.1175/2007JPO3672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, E. F., and A. R. Robinson, 1987: Analysis models for the estimation of oceanic fields. J. Atmos. Oceanic Technol., 4, 4974, https://doi.org/10.1175/1520-0426(1987)004<0049:AMFTEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., C. Lee, L. Rainville, R. Harcourt, and L. Thomas, 2011: Enhanced turbulence and energy dissipation at ocean fronts. Science, 332, 318322, https://doi.org/10.1126/science.1201515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., and Coauthors, 2018: Ocean convergence and the dispersion of flotsam. Proc. Natl. Acad. Sci. USA, 115, 11621167, https://doi.org/10.1073/pnas.1718453115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1985: Drifter observations of coastal surface currents during CODE: The statistical and dynamical views. J. Geophys. Res., 90, 47564772, https://doi.org/10.1029/JC090iC03p04756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flament, P., and L. Armi, 2000: The shear, convergence, and thermohaline structure of a front. J. Phys. Oceanogr., 30, 5166, https://doi.org/10.1175/1520-0485(2000)030<0051:TSCATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flament, P., L. Armi, and L. Washburn, 1985: The evolving structure of an upwelling filament. J. Geophys. Res., 90, 11 76511 778, https://doi.org/10.1029/JC090iC06p11765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gandin, L. S., 1965: Objective Analysis of Meteorological Fields. Israel Program for Scientific Translations, 242 pp.

  • GPy, 2012: GPy: A Gaussian process framework in python. Accessed 13 February 2019, http://github.com/SheffieldML/GPy.

  • Haza, A., and Coauthors, 2018: Drogue-loss detection for surface drifters during the Lagrangian submesoscale experiment (laser). J. Atmos. Oceanic Technol., 35, 705725, https://doi.org/10.1175/JTECH-D-17-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hua, B. L., J. C. Mcwilliams, and W. B. Owens, 1986: An objective analysis of the POLYMODE local dynamics experiment. Part II: Streamfunction and potential vorticity fields during the intensive period. J. Phys. Oceanogr., 16, 506522, https://doi.org/10.1175/1520-0485(1986)016<0506:AOAOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iskandarani, M., S. Wang, A. Srinivasan, W. Carlisle Thacker, J. Winokur, and O. M. Knio, 2016: An overview of uncertainty quantification techniques with application to oceanic and oil-spill simulations. J. Geophys. Res. Oceans, 121, 27892808, https://doi.org/10.1002/2015JC011366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, M. C., and A. O’Hagan, 2000: Predicting the output from a complex computer code when fast approximations are available. Biometrika, 87, 113, https://doi.org/10.1093/biomet/87.1.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., 1990: A method for optimal analysis of fields with spatially variable mean. J. Geophys. Res., 95, 13 54313 547, https://doi.org/10.1029/JC095iC08p13543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., and F. Hernandez, 1992: Mapping the oceanic mesoscale circulation: Validation of satellite altimetry using surface drifters. J. Atmos. Oceanic Technol., 9, 687698, https://doi.org/10.1175/1520-0426(1992)009<0687:MTOMCV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., J. C. McWilliams, K. Ide, and J. D. Farrara, 2015: A multiscale variational data assimilation scheme: Formulation and illustration. Mon. Wea. Rev., 143, 38043822, https://doi.org/10.1175/MWR-D-14-00384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, https://doi.org/10.1016/j.ocemod.2006.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariano, A. J., and O. B. Brown, 1992: Efficient objective analysis of dynamically heterogeneous and nonstationary fields via the parameter matrix. Deep-Sea Re., 39A, 12551271, https://doi.org/10.1016/0198-0149(92)90068-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1976: Maps from the Mid-Ocean Dynamics Experiment: Part I. Geostrophic streamfunction. J. Phys. Oceanogr., 6, 810827, https://doi.org/10.1175/1520-0485(1976)006<0810:MFTMOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc. London, 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and X. Capet, 2010: 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, https://doi.org/10.1017/S0022112009993272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., L. Armi, K. Fischer, and F. Zachariasen, 2000: Spirals on the sea. Proc. Roy. Soc. London, 456A, 12171280, https://doi.org/10.1098/rspa.2000.0560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novelli, G., C. M. Guigand, C. Cousin, E. H. Ryan, N. J. Laxague, H. Dai, B. K. Haus, and T. M. Özgökmen, 2017: A biodegradable surface drifter for ocean sampling on a massive scale. J. Atmos. Oceanic Technol., 34, 25092532, https://doi.org/10.1175/JTECH-D-17-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., M. J. Molemaker, B. Baschek, B. Holt, G. Marmorino, and G. Smith, 2017: Drifter observations of submesoscale flow kinematics in the coastal ocean. Geophys. Res. Lett., 44, 330337, https://doi.org/10.1002/2016GL071537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Özgökmen, T. M., A. C. Poje, P. F. Fischer, H. Childs, H. Krishnan, C. Garth, A. C. Haza, and E. Ryan, 2012: On multi-scale dispersion under the influence of surface mixed layer instabilities and deep flows. Ocean Modell., 56, 1630, https://doi.org/10.1016/j.ocemod.2012.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paciorek, C. J., and M. J. Schervish, 2006: Spatial modelling using a new class of nonstationary covariance functions. Environmetrics, 17, 483506, https://doi.org/10.1002/env.785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poje, A. C., and Coauthors, 2014: Submesoscale dispersion in the vicinity of the Deepwater Horizon spill. Proc. Natl. Acad. Sci. USA, 111, 12 69312 698, https://doi.org/10.1073/pnas.1402452111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rascle, N., J. Molemaker, L. Marié, F. Nouguier, B. Chapron, B. Lund, and A. Mouche, 2017: Intense deformation field at oceanic front inferred from directional sea surface roughness observations. Geophys. Res. Lett., 44, 55995608, https://doi.org/10.1002/2017GL073473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, C. E., and C. K. I. Williams, 2006: Gaussian Processes for Machine Learning. MIT Press, 266 pp.

    • Crossref
    • Export Citation
  • Scully-Power, P., 1986: Navy oceanographer shuttle observations STS 41-G mission report. NUSC Tech. Doc. 7611, Naval Underwater Systems Center, 117 pp., https://apps.dtic.mil/dtic/tr/fulltext/u2/a233578.pdf.

  • Shcherbina, A. Y., E. A. D’Asaro, C. M. Lee, J. M. Klymak, M. J. Molemaker, and J. C. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 47064711, https://doi.org/10.1002/grl.50919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thacker, W. C., M. Iskandarani, R. C. Gonçalves, A. Srinivasan, and O. M. Knio, 2015: Pragmatic aspects of uncertainty propagation: A conceptual review. Ocean Modell., 95, 2536, https://doi.org/10.1016/j.ocemod.2015.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and C. M. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, https://doi.org/10.1175/JPO2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and R. Ferrari, 2008: Friction, frontogenesis, and the stratification of the surface mixed layer. J. Phys. Oceanogr., 38, 25012518, https://doi.org/10.1175/2008JPO3797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkin, J. L., M. M. Bowen, and W. J. Emery, 2002: Mapping mesoscale currents by optimal interpolation of satellite radiometer and altimeter data. Ocean Dyn., 52, 95103, https://doi.org/10.1007/s10236-001-0011-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1318 419 87
PDF Downloads 1082 235 13