• Bates, M., R. Tulloch, J. Marshall, and R. Ferrari, 2014: Rationalizing the spatial distribution of mesoscale eddy diffusivity in terms of mixing length theory. J. Phys. Oceanogr., 44, 15231540, https://doi.org/10.1175/JPO-D-13-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bi, D., W.F. Budd, A.C. Hirst and X. Wu, 2002: Response of the Antarctic Circumpolar Current transport to global warming in a coupled model. Geophys. Res. Lett., 29, 2173, https://doi.org/10.1029/2002GL015919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, S., P. R. Gent, F. O. Bryan, A. F. Thompson, M. C. Long, and R. Abernathey, 2016: Southern Ocean overturning compensation in an eddy-resolving climate simulation. J. Phys. Oceanogr., 46, 15751592, https://doi.org/10.1175/JPO-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J., A. Hall and X. Qu, 2009: Deep ocean heat uptake as a major source of spread in transient climate change simulations, Geophys. Res. Lett., 36, L22701, https://doi.org/10.1029/2009GL040845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boning, C. W., A. Dispert, M. Visbeck, S. R. Rintoul, and F. U. Schwarzkopf, 2008: The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci., 1, 864869, https://doi.org/10.1038/ngeo362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, F., P. R. Gent, and R. Tomas, 2014: Can Southern Ocean eddy effects be parameterized in climate models? J. Climate, 27, 411425, https://doi.org/10.1175/JCLI-D-12-00759.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., and E. C. Brady, 1989: Eddy momentum and heat fluxes and their effect on the circulation of the equatorial Pacific Ocean. J. Mar. Res., 47, 5579, https://doi.org/10.1357/002224089785076389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckingham, C. E., and Coauthors, 2017: Testing Munk’s hypothesis for sub-mesoscale eddy generation using observations in the North Atlantic. J. Geophys. Res. Oceans, 122, 67256745, https://doi.org/10.1002/2017JC012910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Busecke, J. J. M., and R. P. Abernathey, 2019: Ocean mesoscale mixing linked to climate variability. Sci. Adv., 5, eaav5014, https://doi.org/10.1126/sciadv.aav5014.

    • Crossref
    • Export Citation
  • Canuto, V. M., and I. Mazzitelli, 1991: Stellar turbulent convection: New model and applications. Astrophys. J., 370, 295311.

  • Canuto, V. M., and M. S. Dubovikov, 1996: A dynamical model for turbulence. I. General formalism. Phys. Fluids, 8, 571586, https://doi.org/10.1063/1.868842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., and M. S. Dubovikov, 2005: Modeling mesoscale eddies. Ocean Modell., 8, 130, https://doi.org/10.1016/j.ocemod.2003.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., and M. S. Dubovikov, 2006: Dynamical model of mesoscales in z-coordinates. Ocean Modell., 11, 123166, https://doi.org/10.1016/j.ocemod.2004.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., and M. S. Dubovikov, 2011: Comparison of four mixed layer mesoscale parameterizations and the equation for an arbitrary tracer. Ocean Modell., 39, 200207, https://doi.org/10.1016/j.ocemod.2011.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., G. J. Hartke, A. Battaglia, and J. Chasnov, 1990: Theoretical study of turbulent channel flow: Bulk properties, pressure fluctuations, and propagation of electromagnetic waves. J. Fluid Mech., 211, 117, https://doi.org/10.1017/S0022112090001471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., Y. Cheng, M. S. Dubovikov, A. M. Howard, and A. Leboissetier, 2018: Parameterization of mixed layer and deep-ocean mesoscales including nonlinearity. J. Phys. Oceanogr., 48, 555572, https://doi.org/10.1175/JPO-D-16-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cessi, P., 2008: An energy-constrained parameterization of eddy buoyancy flux. J. Phys. Oceanogr., 38, 18071819, https://doi.org/10.1175/2007JPO3812.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of non-linear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean content from 1960 to 2015. Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., S. G. Alderson, B. A. King, and M. A. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in the Drake Passage. J. Geophys. Res., 108, 8084, https://doi.org/10.1029/2001JC001147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and J. Marshall, 2007: Effects of vertical variations of thickness diffusivity in an ocean general circulation model. Ocean Modell., 18, 122141, https://doi.org/10.1016/j.ocemod.2007.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in Coordinated Ocean-ice reference experiment phase II (CORE-II). Part I: Mean states. Ocean Modell., 73, 76107, https://doi.org/10.1016/j.ocemod.2013.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danilov, S. D., and D. Gurarie, 2000: Quasi-2D turbulence. Phys. Usp., 43, 863900, https://doi.org/10.1070/PU2000v043n09ABEH000782.

  • Dong, S., J. Sprintall, S. T. Gille, and L. Talley, 2008: Southern Ocean mixed-layer depth from Argo float profiles. J. Geophys. Res., 113, C06013, https://doi.org/10.1029/2006JC004051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Downes, S. M., and A. McC. Hogg, 2013: Southern Ocean circulation and eddy compensation in CMIP5 models. J. Climate, 26, 71987220, https://doi.org/10.1175/JCLI-D-12-00504.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and R. J. Greatbatch, 2008: Towards a mesoscale eddy closure. Ocean Modell., 20, 223239, https://doi.org/10.1016/j.ocemod.2007.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., and P. R. Gent, 2011: The effect of the eddy-induced advection coefficient in a coarse resolution coupled climate model. Ocean Modell., 39, 135145, https://doi.org/10.1016/j.ocemod.2011.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., T. L Delworth, A. J. Rosati, S. M. Griifies, and F. Zeng, 2010: The role of mesoscale eddies in the re-stratification of the Souter Ocean response to climate change. J. Phys. Oceanogr., 40, 15391557, https://doi.org/10.1175/2010JPO4353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farneti, R., and Coauthors, 2015: An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Modell., 93, 84120, https://doi.org/10.1016/j.ocemod.2015.07.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and K. I. Polzin, 2005: Finescale structure of the TS relation in the eastern North Atlantic. J. Phys. Oceanogr., 35, 14371454, https://doi.org/10.1175/JPO2763.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519, https://doi.org/10.1175/2010JPO4278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35, 18911910, https://doi.org/10.1175/JPO2785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frenger, I., M. Munnich, N. Gruber, and R. Knutti, 2015: Southern Ocean eddy phenomenology. J. Geophys. Res., 120, 74137449, https://doi.org/10.1002/2015JC011047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., 2009: Pattern and velocity of propagation of the global ocean eddy variability. J. Geophys. Res., 114, C11017, https://doi.org/10.1029/2009JC005349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., 2003: Large-scale mass transport, water mass formation and diffusivities estimated from World Ocean Circulation Experiment (WOCE) hydrographic data. J. Geophys. Res., 108, 3213, https://doi.org/10.1029/2002JC001565.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global circulation, heat transport and mixing from hydrographic data. Nature, 408, 453456, https://doi.org/10.1038/35044048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 2011: The Gent–McWilliams parameterization: 20/20 hindsight. Ocean Modell., 39, 29, https://doi.org/10.1016/j.ocemod.2010.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 2016: Effects of Southern Hemisphere wind changes on the meridional overturning circulation in ocean models. Annu. Rev. Mar. Sci., 8, 7994, https://doi.org/10.1146/annurev-marine-122414-033929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and G. Danabasoglu, 2011: Response to increasing Southern Hemisphere winds in CCSM4. J. Climate, 24, 49924998, https://doi.org/10.1175/JCLI-D-10-05011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974: Energy partition in the large-scale circulation and the production of mid-ocean eddies. Deep-Sea Res. Oceanogr. Abstr., 21, 499528, https://doi.org/10.1016/0011-7471(74)90010-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect on time dependent climate change. Climate Dyn., 16, 501515, https://doi.org/10.1007/s003820000059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modell., 26, 146, https://doi.org/10.1016/j.ocemod.2008.08.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofman, M., and M. A. Morales Maqueda, 2011: The response of Southern Ocean eddies to increased mid-latitude westerlies: A non-eddy resolving study. Geophys. Res. Lett., 38, L03605, https://doi.org/10.1029/2010GL045972.

    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., 1997: On parameterization of eddy transport. J. Mar. Res., 55, 11711197, https://doi.org/10.1357/0022240973224102.

  • Klocker, A., and R. Abernathey, 2014: Global patterns of mesoscale eddy properties and diffusivities. J. Phys. Oceanogr., 44, 10301046, https://doi.org/10.1175/JPO-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klocker, A., and D. P. Marshall, 2014: Advection of baroclinic eddies by depth mean flow. Geophys. Res. Lett., 41, 35173521, https://doi.org/10.1002/2014GL060001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., and J. M. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett., 39, L18608, https://doi.org/10.1029/2012GL052952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., R. S. Smith, Z. Wang, and J. M. Gregory, 2012: The influence of eddy parameterizations on the transport of the Antarctic Circumpolar Current in coupled climate models. Ocean Modell., 52–53, 18, https://doi.org/10.1016/j.ocemod.2012.04.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, and S. C. Doney, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27, 24182447, https://doi.org/10.1175/1520-0485(1997)027<2418:STSFAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebedev, K. V., H. Yoshinari, N. A. Maximenko, and P. W. Hacker, 2007: YoMaHa’07: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Tech. Note 4(2), 20 pp., http://apdrc.soest.hawaii.edu/projects/yomaha/yomaha07/YoMaHa070612.pdf.

  • Le Sommer, J., F. d’Ovidio, and G. Madec, 2011: Parameterization of subgrid stirring in eddy resolving ocean models. Part I: Theory and diagnostics. Ocean Modell., 39, 154169, https://doi.org/10.1016/j.ocemod.2011.03.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., G. A. Schmidt, D. G. Martinson, D. Rind, G. L. Russell, and X. Yuan, 2003: Sensitivity of sea ice to physical parameterizations in the GISS global climate model. J. Geophys. Res., 108, 3053, https://doi.org/10.1029/2001JC001167.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, P. T. Boyer, and H. E. Garcia, 2006, Temperature. Vol. 1, World Ocean Atlas 2005, NOAA Atlas NESDIS 61, 182 pp.

  • Lumley, J. L., and A. Yaglom, 2001: A century of turbulence. Flow Turbul. Combust., 66, 241286, https://doi.org/10.1023/A:1012437421667.

  • Lumpkin, R., and K. Speer, 2003: Large scale vertical and horizontal circulation in the North Atlantic Ocean. J. Phys. Oceanogr., 33, 19021920, https://doi.org/10.1175/1520-0485(2003)033<1902:LVAHCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., K. Speer, and K. Kolterman, 2008: Transport across 28°N in the Atlantic Ocean. J. Phys. Oceanogr., 38, 733752, https://doi.org/10.1175/2007JPO3636.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luneva, M. V., C. A. Clayson, and M. S. Dubovikov, 2015: Effects of mesoscale eddies in the active mixed layer: Test of the parameterization in eddy resolving simulations. Geophys. Astrophys. Fluid Dyn., 109, 281310, https://doi.org/10.1080/03091929.2015.1041023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComb, W. D., 1992: The Physics of Fluid Turbulence. Oxford Science Publications, 572 pp.

  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Ozgokmen, A. Haza, and M. Veneziani, 2013: Seasonality of sub-mesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63, 923941, https://doi.org/10.1007/s10236-013-0633-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., A. C. Naveira Garabato, A. Mc.Hogg, and R. Farneti, 2012: Sensitivity of the overturning circulation in the southern ocean to decadal changes in wind forcing. J. Climate, 25, 99110, https://doi.org/10.1175/2011JCLI4204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulsen, M. B., M. Jochum, and R. Nuterman, 2018: Parameterized and resolved Southern Ocean eddy compensation. Ocean Modell., 124, 115, https://doi.org/10.1016/j.ocemod.2018.01.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: Bericht uber Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech., 5, 136139.

  • Ramachandran, S., A. Tandon, and A. Mahadevan, 2014: Enhancement in vertical fluxes at a front by mesoscale-submesoscale coupling. J. Geophys. Res. Oceans, 119, 84958511, https://doi.org/10.1002/2014JC010211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roach, C. J., D. Balwada, and K. Speer, 2018: Global observations of horizontal mixing from Argo floats and surface drifter trajectories. J. Geophys. Res. Oceans, 123, 45604575, https://doi.org/10.1029/2018JC013750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, A. R., and J. C. McWilliams, 1974: The baroclinic instability of the open ocean. J. Phys. Oceanogr., 4, 281294, https://doi.org/10.1175/1520-0485(1974)004<0281:TBIOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, G. L., J. R. Miller, and D. H. Rind, 1995: A coupled atmosphere-ocean model for transient climate change. Atmos.–Ocean, 33, 683730, https://doi.org/10.1080/07055900.1995.9649550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, G. L., J. R. Miller, D. H. Rind, R. A. Ruedy, G. A. Schmidt, and S. Sheth, 2000: Comparison of model and observed regional temperature changes during the past 40 +years. J. Geophys. Res., 105, 14 89114 898, https://doi.org/10.1029/2000JD900156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., J. C. Fyfe, and M. H. England, 2005: On the response of the ocean wind-driven circulation to atmospheric CO2 increase. Climate Dyn., 25, 415426, https://doi.org/10.1007/s00382-005-0032-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. Speer, R. Morrow, and R. Lumpkin, 2008: An estimate of Lagrangian eddy statistics and diffusion in the mixed layer of the Southern Ocean. J. Mar. Res., 66, 441463., https://doi.org/10.1357/002224008787157458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scharffenberg, M. G., and D. Stammer, 2010: Seasonal variations of the geostrophic flow field and of eddy kinetic energy inferred from TOPEX/Poseidon and Jason-1 Tandem Mission Data. J. Geophys. Res., 115, C02008, https://doi.org/10.1029/2008JC005242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, https://doi.org/10.1002/2013MS000265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, https://doi.org/10.1175/JPO2771.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instabilities in Earth’s oceans. J. Mar. Res., 65, 655683, https://doi.org/10.1357/002224007783649484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and J. Marshall, 2009: Evidence of enhanced mixing at middepth in the Southern Ocean. J. Phys. Oceanogr., 39, 5069, https://doi.org/10.1175/2008JPO3880.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1998: On eddy characteristic, eddy transport and mean flow properties. J. Phys. Oceanogr., 28, 727739, https://doi.org/10.1175/1520-0485(1998)028<0727:OECETA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1966: On non-geostrophic baroclinic stability. J. Atmos. Sci., 23, 390400, https://doi.org/10.1175/1520-0469(1966)023<0390:ONGBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and Coauthors, 2014: Direct estimates of lateral eddy diffusivity upstream of Drake Passage. J. Phys. Oceanogr., 44, 25932616, https://doi.org/10.1175/JPO-D-13-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veneziani, M., A. Griffa, Z. Garrafo, and J. A. Mensa, 2014: Barrier layers in the tropical South Atlantic: Mean dynamics and sub-mesoscale effects. J. Phys. Oceanogr., 44, 265288, https://doi.org/10.1175/JPO-D-13-064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visbeck, M. J., J. Marshall, J. Haine, and M. Spall, 1997: On the specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402, https://doi.org/10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, J. S., C. Eden, I. Fast, H. Haak, D. Hernandez-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the world ocean based on a the 1/10° STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkin, J. L., and R. A. Morrow, 1994: Eddy kinetic energy and momentum flux in the Southern Ocean: Comparison of a global eddy-resolving model with altimeter, drifter and current meter data. J. Geophys. Res., 99, 79037916, https://doi.org/10.1029/93JC03505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WOCE, 2002: WOCE Global Data, version 3.0. WOCE Rep. 180/02, WOCE International Project Office, https://www.nodc.noaa.gov/woce/woce_v3/wocedata_1/diu/welcome.htm.

  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 17701794, https://doi.org/10.1175/1520-0485(1997)027<1770:TVPOOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 160 81 0
PDF Downloads 159 89 0

Three-Dimensional, Space-Dependent Mesoscale Diffusivity: Derivation and Implications

View More View Less
  • 1 NASA Goddard Institute for Space Studies, and Department of Applied Physics and Mathematics, Columbia University, New York, New York
  • | 2 NASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Columbia University, New York, New York
  • | 3 NASA Goddard Institute for Space Studies, and Department of Physics and Computer Science, Medgar Evers College of the City University of New York, New York, New York
  • | 4 NASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Columbia University, New York, New York
Restricted access

Abstract

Recently, we presented a parameterization of an arbitrary tracer 3D mesoscale flux that describes both diabatic and adiabatic regimes without using arbitrary tapering functions. However, we did not parameterize the mesoscale diffusivity, which is the subject of this work. A key difference between the present and previous diffusivity parameterizations is that in the latter, the two main ingredients, mesoscale drift velocity and eddy kinetic energy, were not parameterized but determined using present data, which deprives the models of predictive power. Since winds, stratification, etc., are predicted to change in the future, use of these parameterizations to study future climate scenarios becomes questionable. In this work, we parameterize drift velocity and eddy kinetic energy (vertical–horizontal components), which we first assess with data [WOCE, TOPEX/Poseidon (T/P), and North Atlantic Tracer Release Experiment (NATRE)] and then use in a coarse-resolution stand-alone ocean code under Coordinated Ocean-Ice Reference Experiment I (CORE-I) forcing. We present results for the global ocean temperature and salinity, Atlantic overturning circulation, meridional heat transport, and Drake Passage transport, which we compare with several previous studies. The temperature drift is less than that of five of seven previous OGCMs, and the salinity drift is among the smallest in those studies. The predicted winter Antarctic Circumpolar Current mixed layer depths (MLDs) are in good agreement with the data. Predicting the correct MLD is important in climate studies since models that predict very deep mixed layers transfer more of the radiative perturbation to the deep ocean, reducing surface warming (and vice versa).

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: V. M. Canuto, vmcanuto@gmail.com

Abstract

Recently, we presented a parameterization of an arbitrary tracer 3D mesoscale flux that describes both diabatic and adiabatic regimes without using arbitrary tapering functions. However, we did not parameterize the mesoscale diffusivity, which is the subject of this work. A key difference between the present and previous diffusivity parameterizations is that in the latter, the two main ingredients, mesoscale drift velocity and eddy kinetic energy, were not parameterized but determined using present data, which deprives the models of predictive power. Since winds, stratification, etc., are predicted to change in the future, use of these parameterizations to study future climate scenarios becomes questionable. In this work, we parameterize drift velocity and eddy kinetic energy (vertical–horizontal components), which we first assess with data [WOCE, TOPEX/Poseidon (T/P), and North Atlantic Tracer Release Experiment (NATRE)] and then use in a coarse-resolution stand-alone ocean code under Coordinated Ocean-Ice Reference Experiment I (CORE-I) forcing. We present results for the global ocean temperature and salinity, Atlantic overturning circulation, meridional heat transport, and Drake Passage transport, which we compare with several previous studies. The temperature drift is less than that of five of seven previous OGCMs, and the salinity drift is among the smallest in those studies. The predicted winter Antarctic Circumpolar Current mixed layer depths (MLDs) are in good agreement with the data. Predicting the correct MLD is important in climate studies since models that predict very deep mixed layers transfer more of the radiative perturbation to the deep ocean, reducing surface warming (and vice versa).

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: V. M. Canuto, vmcanuto@gmail.com
Save