An Analytical Derivation of Ice-Shelf Basal Melt Based on the Dynamics of Meltwater Plumes

Werner M. J. Lazeroms Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands

Search for other papers by Werner M. J. Lazeroms in
Current site
Google Scholar
PubMed
Close
,
Adrian Jenkins British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom

Search for other papers by Adrian Jenkins in
Current site
Google Scholar
PubMed
Close
,
Sjoerd W. Rienstra Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands

Search for other papers by Sjoerd W. Rienstra in
Current site
Google Scholar
PubMed
Close
, and
Roderik S. W. van de Wal Institute for Marine and Atmospheric Research Utrecht, and Faculty of Geosciences, Department of Physical Geography, Utrecht University, Utrecht, Netherlands

Search for other papers by Roderik S. W. van de Wal in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The interaction between ice shelves and the ocean is an important process for the development of marine ice sheets. However, it is difficult to model in full detail due to the high computational cost of coupled ice–ocean simulations, so that simplified basal-melt parameterizations are required. In this work, a new analytical expression for basal melt is derived from the theory of buoyant meltwater plumes moving upward under the ice shelf and driving the overturning circulation within the ice-shelf cavity. The governing equations are nondimensionalized in the case of an ice shelf with constant basal slope and uniform ambient ocean conditions. An asymptotic analysis of these equations in terms of small slopes and small thermal driving, assumed typical for Antarctic ice shelves, leads to an equation that can be solved analytically for the dimensionless melt rate. This analytical expression describes a universal melt-rate curve onto which the scaled results of the original plume model collapse. Its key features are a positive melt peak close to the grounding line and a transition to refreezing further away. Comparing the analytical expression with numerical solutions of the plume model generally shows a close agreement between the two, even for more general cases than the idealized geometry considered in the derivation. The results show how the melt rates adapt naturally to changes in the geometry and ambient ocean temperature. The new expression can readily be used for improving ice-sheet models that currently still lack a sufficiently realistic description of basal melt.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Roderik S. W. van de Wal, r.s.w.vandewal@uu.nl

Abstract

The interaction between ice shelves and the ocean is an important process for the development of marine ice sheets. However, it is difficult to model in full detail due to the high computational cost of coupled ice–ocean simulations, so that simplified basal-melt parameterizations are required. In this work, a new analytical expression for basal melt is derived from the theory of buoyant meltwater plumes moving upward under the ice shelf and driving the overturning circulation within the ice-shelf cavity. The governing equations are nondimensionalized in the case of an ice shelf with constant basal slope and uniform ambient ocean conditions. An asymptotic analysis of these equations in terms of small slopes and small thermal driving, assumed typical for Antarctic ice shelves, leads to an equation that can be solved analytically for the dimensionless melt rate. This analytical expression describes a universal melt-rate curve onto which the scaled results of the original plume model collapse. Its key features are a positive melt peak close to the grounding line and a transition to refreezing further away. Comparing the analytical expression with numerical solutions of the plume model generally shows a close agreement between the two, even for more general cases than the idealized geometry considered in the derivation. The results show how the melt rates adapt naturally to changes in the geometry and ambient ocean temperature. The new expression can readily be used for improving ice-sheet models that currently still lack a sufficiently realistic description of basal melt.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Roderik S. W. van de Wal, r.s.w.vandewal@uu.nl
Save
  • Asay-Davis, X. S., S. L. Cornford, B. K. Galton-Fenzi, R. M. Gladstone, G. H. Gudmundsson, D. M. Holland, P. R. Holland, and D. F. Martin, 2016: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP+), ISOMIP v. 2 (ISOMIP+) and MISOMIP v. 1 (MISOMIP1). Geosci. Model Dev., 9, 24712497, https://doi.org/10.5194/gmd-9-2471-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asay-Davis, X. S., N. C. Jourdain, and Y. Nakayama, 2017: Developments in simulating and parameterizing interactions between the Southern Ocean and the Antarctic Ice sheet. Curr. Climate Change Rep., 3, 316329, https://doi.org/10.1007/s40641-017-0071-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and H. Goosse, 2003: A parameterization of ice shelf-ocean interaction for climate models. Ocean Modell., 5, 157170, https://doi.org/10.1016/S1463-5003(02)00019-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bo Pedersen, F., 1980: Dense bottom currents in rotating ocean. J. Hydraul. Div., 106, 12911308.

  • Bombosch, A., and A. Jenkins, 1995: Modeling the formation and deposition of frazil ice beneath Filchner-Ronne Ice Shelf. J. Geophys. Res., 100, 69836992, https://doi.org/10.1029/94JC03224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crabtree, R. D., and C. S. M. Doake, 1982: Pine Island Glacier and its drainage basin: Results from radio echo-sounding. Ann. Glaciol., 3, 6570, https://doi.org/10.1017/S0260305500002548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Boer, B., and Coauthors, 2015: Simulating the Antarctic ice sheet in the Late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project. Cryosphere, 9, 881903, https://doi.org/10.5194/tc-9-881-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeConto, R. M., and D. Pollard, 2016: Contribution of Antarctica to past and future sea-level rise. Nature, 531, 591597, https://doi.org/10.1038/nature17145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Depoorter, M. A., J. L. Bamber, J. A. Griggs, J. T. M. Lenaerts, S. R. M. Ligtenberg, M. R. Van den Broeke, and G. Moholdt, 2013: Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 8992, https://doi.org/10.1038/nature12567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Rydt, J., and G. H. Gudmundsson, 2016: Coupled ice shelf-ocean modeling and complex grounding line retreat from a seabed ridge. J. Geophys. Res. Earth Surf., 121, 865880, https://doi.org/10.1002/2015JF003791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., J. M. Klinck, L.-S. Bai, D. H. Bromwich, K. M. Hines, and D. M. Holland, 2015: The effect of atmospheric forcing resolution on delivery of ocean heat to the Antarctic floating ice shelves. J. Climate, 28, 60676085, https://doi.org/10.1175/JCLI-D-14-00374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckhaus, W., 1979: Asymptotic Analysis of Singular Perturbations. North-Holland, 286 pp.

  • Golledge, N. R., D. E. Kowalewski, T. R. Naish, R. H. Levy, C. J. Fogwill, and E. G. W. Gasson, 2015: The multi-millennial Antarctic commitment to future sea-level rise. Nature, 526, 421425, https://doi.org/10.1038/nature15706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hellmer, H. H., and D. J. Olbers, 1989: A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct. Sci., 1, 325336, https://doi.org/10.1017/S0954102089000490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, P. R., A. Jenkins, and D. M. Holland, 2008: The response of ice shelf basal melting to variations in ocean temperature. J. Climate, 21, 25582572, https://doi.org/10.1175/2007JCLI1909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holmes, M. H., 1995: Introduction to Perturbation Methods. Springer, 356 pp.

    • Crossref
    • Export Citation
  • Jacobs, S. S., H. H. Helmer, C. S. M. Doake, A. Jenkins, and R. M. Frolich, 1992: Melting of ice shelves and the mass balance of Antarctica. J. Glaciol., 38, 375387, https://doi.org/10.1017/S0022143000002252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 1991: A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res., 96, 20 67120 677, https://doi.org/10.1029/91JC01842.

  • Jenkins, A., 2011: Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41, 22792294, https://doi.org/10.1175/JPO-D-11-03.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 2014: Scaling laws for the melt rate and overturning circulation beneath ice shelves derived from simple plume theory. Geophysical Research Abstracts, Vol. 16, Abstract EGU2014-13755, https://meetingorganizer.copernicus.org/EGU2014/EGU2014-13755.pdf.

  • Lane-Serff, G. F., 1995: On meltwater under ice shelves. J. Geophys. Res., 100, 69616965, https://doi.org/10.1029/94JC03244.

  • Lazeroms, W. M. J., A. Jenkins, G. H. Gudmundsson, and R. S. W. van de Wal, 2018: Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes. Cryosphere, 12, 4970, https://doi.org/10.5194/tc-12-49-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacAyeal, D. R., 1985: Evolution of tidally triggered meltwater plumes below ice shelves. Oceanology of the Antarctic Continental Shelf, S. Jacobs, Ed., Antarctic Research Series, Vol. 43, Amer. Geophys. Union, 133–143.

    • Crossref
    • Export Citation
  • Magorrian, S. J., and A. J. Wells, 2016: Turbulent plumes from a glacier terminus melting in a stratified ocean. J. Geophys. Res. Oceans, 121, 46704696, https://doi.org/10.1002/2015JC011160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1982: Momentum balance of gravity flows. J. Atmos. Sci., 39, 27012711, https://doi.org/10.1175/1520-0469(1982)039<2701:MBOGF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mathiot, P., A. Jenkins, C. Harris, and G. Madec, 2017: Explicit and parametrised representation of under ice shelf seas in a z* coordinate ocean model NEMO 3.6. Geosci. Model Dev., 10, 28492874, https://doi.org/10.5194/gmd-10-2849-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattheij, R. M. M., S. W. Rienstra, and J. H. M. ten Thije Boonkkamp, 2005: Partial Differential Equations: Modeling, Analysis, Computation. Society for Industrial and Applied Mathematics, 665 pp.

    • Crossref
    • Export Citation
  • McPhee, M. G., 1992: Turbulent heat flux in the upper ocean under sea ice. J. Geophys. Res. Oceans, 97, 53655379, https://doi.org/10.1029/92JC00239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., C. Kottmeier, and J. H. Morison, 1999: Ocean heat flux in the central Weddell sea during winter. J. Phys. Oceanogr., 29, 11661179, https://doi.org/10.1175/1520-0485(1999)029<1166:OHFITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, R. D., L. Padman, M. S. Dinniman, S. Y. Erofeeva, H. A. Fricker, and M. A. King, 2012: Impact of tide-topography interactions on basal melting of Larsen C Ice Shelf, Antarctica. J. Geophys. Res., 117, C05005, https://doi.org/10.1029/2011JC007263.

    • Search Google Scholar
    • Export Citation
  • Naughten, K. A., K. J. Meissner, B. K. Galton-Fenzi, M. H. England, R. Timmermann, H. H. Hellmer, T. Hattermann, and J. B. Debernard, 2018: Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4. Geosci. Model Dev., 11, 12571292, https://doi.org/10.5194/gmd-11-1257-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nayfeh, A. H., 1973: Perturbation Methods. John Wiley and Sons, 425 pp.

  • Olbers, D., and H. Hellmer, 2010: A box model of circulation and melting in ice shelf caverns. Ocean Dyn., 60, 141153, https://doi.org/10.1007/s10236-009-0252-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, H. D., S. R. M. Ligtenberg, H. A. Fricker, D. G. Vaughan, M. R. Van den Broeke, and L. Padman, 2012: Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502505, https://doi.org/10.1038/nature10968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reese, R., T. Albrecht, M. Mengel, X. Asay-Davis, and R. Winkelmann, 2018: Antarctic sub-shelf melt rates via PICO. Cryosphere, 12, 19691985, https://doi.org/10.5194/tc-12-1969-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., S. Jacobs, J. Mouginot, and B. Scheuchl, 2013: Ice-shelf melting around Antarctica. Science, 341, 266270, https://doi.org/10.1126/science.1235798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., J. Mouginot, M. Morlighem, H. Seroussi, and B. Scheuchl, 2014: Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett., 41, 35023509, https://doi.org/10.1002/2014GL060140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sergienko, O. V., 2013: Basal channels on ice shelves. J. Geophys. Res. Earth Surf., 118, 13421355, https://doi.org/10.1002/jgrf.20105.

  • Seroussi, H., Y. Nakayama, E. Larour, D. Menemenlis, M. Morlighem, E. Rignot, and A. Khazendar, 2017: Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophys. Res. Lett., 44, 61916199, https://doi.org/10.1002/2017GL072910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shabtaie, S., and C. R. Bentley, 1987: West Antarctic ice streams draining into the Ross Ice Shelf: configuration and mass balance. J. Geophys. Res., 92, 13111336, https://doi.org/10.1029/JB092iB02p01311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, D., P. Nienow, A. Sole, T. Cowton, R. Mottram, P. Langen, and D. Mair, 2017: Spatially distributed runoff at the grounding line of a large Greenlandic tidewater glacier inferred from plume modelling. J. Glaciol., 63, 309323, https://doi.org/10.1017/jog.2016.139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., and A. Jenkins, 2004: Frazil ice formation in an ice shelf water plume. J. Geophys. Res., 109, C03025, https://doi.org/10.1029/2003JC001851.

    • Search Google Scholar
    • Export Citation
  • Thoma, M., J. Determann, K. Grosfeld, S. Goeller, and H. H. Hellmer, 2015: Future sea-level rise due to projected ocean warming beneath the Filchner Ronne Ice Shelf: A coupled model study. Earth Planet. Sci. Lett., 431, 217224, https://doi.org/10.1016/j.epsl.2015.09.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, R., and H. H. Hellmer, 2013: Southern Ocean warming and increased ice shelf basal melting in the twenty-first and twenty-second centuries based on coupled ice-ocean finite-element modelling. Ocean Dyn., 63, 10111026, https://doi.org/10.1007/s10236-013-0642-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, R., and S. Goeller, 2017: Response to Filchner–Ronne Ice Shelf cavity warming in a coupled ocean–ice sheet model–Part 1: The ocean perspective. Ocean Sci., 13, 765776, https://doi.org/10.5194/os-13-765-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1104 375 140
PDF Downloads 695 167 19