On the Momentum Flux of Internal Tides

Callum J. Shakespeare Research School of Earth Sciences, Australian National University, Canberra, Australia

Search for other papers by Callum J. Shakespeare in
Current site
Google Scholar
PubMed
Close
and
Andrew McC. Hogg Research School of Earth Sciences, and ARC Centre of Excellence in Climate Extremes, Australian National University, Canberra, Australia

Search for other papers by Andrew McC. Hogg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The action of the barotropic tide over seafloor topography is the major source of internal waves at the bottom of the ocean. This internal tide has long been recognized to play an important role in ocean mixing. Here it is shown that the internal tide is also associated with a net (domain integrated) momentum flux. The net flux occurs as a result of the Doppler shifting of the internal tide at the point of generation by near-bottom mean flows. Linear theory is presented that predicts the amplitude of the wave momentum flux. The net flux scales with the bottom flow speed and the topographic wavenumber to the fourth power and is directed opposite to the bottom flow. For realistic topography, the predicted peak momentum flux occurs at scales of order 10 km and smaller, with magnitudes of order 10−3–10−2 N m−2. The theory is verified by comparison with a suite of idealized internal wave-resolving simulations. The simulations show that, for the topography considered, the wave momentum flux radiates away from the bottom and enhances mean and eddying flow when the tidal waves dissipate in the upper ocean. Our results suggest that internal tides may play an important role in forcing the upper ocean.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Callum J. Shakespeare, callum.shakespeare@anu.edu.au

Abstract

The action of the barotropic tide over seafloor topography is the major source of internal waves at the bottom of the ocean. This internal tide has long been recognized to play an important role in ocean mixing. Here it is shown that the internal tide is also associated with a net (domain integrated) momentum flux. The net flux occurs as a result of the Doppler shifting of the internal tide at the point of generation by near-bottom mean flows. Linear theory is presented that predicts the amplitude of the wave momentum flux. The net flux scales with the bottom flow speed and the topographic wavenumber to the fourth power and is directed opposite to the bottom flow. For realistic topography, the predicted peak momentum flux occurs at scales of order 10 km and smaller, with magnitudes of order 10−3–10−2 N m−2. The theory is verified by comparison with a suite of idealized internal wave-resolving simulations. The simulations show that, for the topography considered, the wave momentum flux radiates away from the bottom and enhances mean and eddying flow when the tidal waves dissipate in the upper ocean. Our results suggest that internal tides may play an important role in forcing the upper ocean.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Callum J. Shakespeare, callum.shakespeare@anu.edu.au
Save
  • Andrews, D., and M. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., S. T. Garner, R. W. Hallberg, and H. L. Simmons, 2004: The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Res. II, 51, 30693101, https://doi.org/10.1016/j.dsr2.2004.09.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T., 1975a: Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67, 705722, https://doi.org/10.1017/S0022112075000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T., 1975b: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, https://doi.org/10.1029/JC080i003p00320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Booker, J. R., and F. P. Bretherton, 1967: The critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27, 513539, https://doi.org/10.1017/S0022112067000515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1969: Momentum transport by gravity waves. Quart. J. Roy. Meteor. Soc., 95, 213243, https://doi.org/10.1002/qj.49709540402.

  • Bühler, O., 2014: Waves and Mean Flows. 2nd ed. Cambridge University Press, 360 pp., https://doi.org/10.1017/CBO9781107478701.

    • Crossref
    • Export Citation
  • Chen, C., and R. C. Beardsley, 1995: A numerical study of stratified tidal rectification over finite-amplitude banks. Part I: Symmetric banks. J. Phys. Oceanogr., 25, 20902110, https://doi.org/10.1175/1520-0485(1995)025<2090:ANSOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., and D. Olbers, 2017: A closure for internal wave–mean flow interaction. Part II: Wave drag. J. Phys. Oceanogr., 47, 14031412, https://doi.org/10.1175/JPO-D-16-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 123.

  • Garrett, C., and W. Munk, 1972: Space-time scales of internal waves. Geophys. Astrophys. Fluid Dyn., 3, 225264, https://doi.org/10.1080/03091927208236082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and T. H. Jordan, 1988: Stochastic modeling of seafloor morphology: Inversion of sea beam data for second-order statistics. J. Geophys. Res., 93, 13 58913 608, https://doi.org/10.1029/JB093iB11p13589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grisouard, N., and O. Bühler, 2012: Forcing of oceanic mean flows by dissipating internal tides. J. Fluid Mech., 708, 250278, https://doi.org/10.1017/jfm.2012.303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Imawaki, S., 1983: Vorticity balance for mid-ocean mesoscale eddies at an abyssal depth. Nature, 303, 606607, https://doi.org/10.1038/303606a0.

  • Jones, W. L., 1967: Propagation of internal gravity waves in fluids with shear flow and rotation. J. Fluid Mech., 30, 439448, https://doi.org/10.1017/S0022112067001521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 1985: Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544565, https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., 2017: The internal-wave-driven meridional overturning circulation. J. Phys. Oceanogr., 47, 26732689, https://doi.org/10.1175/JPO-D-16-0142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, K. G., and M. Dunphy, 2018: Internal wave generation by tidal flow over a two-dimensional ridge: Energy flux asymmetries induced by a steady surface trapped current. J. Fluid Mech., 836, 192221, https://doi.org/10.1017/jfm.2017.800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddison, J. R., and D. P. Marshall, 2013: The Eliassen–Palm flux tensor. J. Fluid Mech., 729, 69102, https://doi.org/10.1017/jfm.2013.259.

  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M., 1981: On the ‘wave momentum’ myth. J. Fluid Mech., 106, 331347, https://doi.org/10.1017/S0022112081001626.

  • McPhaden, M., J. Proehl, and L. Rothstein, 1986: The interaction of equatorial Kelvin waves with realistically sheared zonal currents. J. Phys. Oceanogr., 16, 14991515, https://doi.org/10.1175/1520-0485(1986)016<1499:TIOEKW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyahara, S., Y. Yoshida, and Y. Miyoshi, 1993: Dynamic coupling between the lower and upper atmosphere by tides and gravity waves. J. Atmos. Terr. Phys., 55, 10391053, https://doi.org/10.1016/0021-9169(93)90096-H.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muench, J. E., and E. Kunze, 2000: Internal wave interactions with equatorial deep jets. Part II: Acceleration of the jets. J. Phys. Oceanogr., 30, 20992110, https://doi.org/10.1175/1520-0485(2000)030<2099:IWIWED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 264–291.

  • Nash, J. D., E. Kunze, J. Toole, and R. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134, https://doi.org/10.1175/1520-0485(2004)034<1117:ITRATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., A. G. Nurser, R. B. Scott, and J. A. Goff, 2013: The impact of small-scale topography on the dynamical balance of the ocean. J. Phys. Oceanogr., 43, 647668, https://doi.org/10.1175/JPO-D-12-056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinkel, R., L. Rainville, and J. Klymak, 2012: Semidiurnal baroclinic wave momentum fluxes at Kaena Ridge, Hawaii. J. Phys. Oceanogr., 42, 12491269, https://doi.org/10.1175/JPO-D-11-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and A. McC. Hogg, 2017a: Spontaneous surface generation and interior amplification of internal waves in a regional-scale ocean model. J. Phys. Oceanogr., 47, 811826, https://doi.org/10.1175/JPO-D-16-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and A. McC. Hogg, 2017b: The viscous lee wave problem and its implications for ocean modelling. Ocean Modell., 113, 2229, https://doi.org/10.1016/j.ocemod.2017.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and A. McC. Hogg, 2018: The life cycle of spontaneously generated internal waves. J. Phys. Oceanogr., 48, 343359, https://doi.org/10.1175/JPO-D-17-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899, https://doi.org/10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and J. D. Nash, 2004: On the fraction of internal tide energy dissipated near topography. Near-Boundary Processes and Their Parameterization: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 45–58.

  • St. Laurent, L., S. Stringer, C. Garrett, and D. Perrault-Joncas, 2003: The generation of internal tides at abrupt topography. Deep-Sea Res. I, 50, 9871003, https://doi.org/10.1016/S0967-0637(03)00096-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trossman, D. S., B. K. Arbic, J. G. Richman, S. T. Garner, S. R. Jayne, and A. J. Wallcraft, 2016: Impact of topographic internal lee wave drag on an eddying global ocean model. Ocean Modell., 97, 109128, https://doi.org/10.1016/j.ocemod.2015.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, R. M., 1949: The role of mountains in the angular-momentum balance of the atmosphere. J. Meteor., 6, 353355, https://doi.org/10.1175/1520-0469(1949)006<0353:TROMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, J., and J. Vanneste, 2017: Interaction between mountain waves and shear flow in an inertial layer. J. Fluid Mech., 816, 352380, https://doi.org/10.1017/jfm.2017.39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., 1983: Topographic rectification of tidal currents. J. Phys. Oceanogr., 13, 716721, https://doi.org/10.1175/1520-0485(1983)013<0716:TROTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1007 310 74
PDF Downloads 766 173 6