The Effect of Foam on Waves and the Aerodynamic Roughness of the Water Surface at High Winds

Yu. Troitskaya Institute of Applied Physics, Nizhny Novgorod, and A.M. Obukhov Institute of Atmospheric Physics, Moscow, Russia

Search for other papers by Yu. Troitskaya in
Current site
Google Scholar
PubMed
Close
,
D. Sergeev Institute of Applied Physics, Nizhny Novgorod, Russia

Search for other papers by D. Sergeev in
Current site
Google Scholar
PubMed
Close
,
A. Kandaurov Institute of Applied Physics, Nizhny Novgorod, Russia

Search for other papers by A. Kandaurov in
Current site
Google Scholar
PubMed
Close
,
M. Vdovin Institute of Applied Physics, Nizhny Novgorod, Russia

Search for other papers by M. Vdovin in
Current site
Google Scholar
PubMed
Close
, and
S. Zilitinkevich Finnish Meteorological Institute, and Institute of Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland and Faculty of Radio-physics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia

Search for other papers by S. Zilitinkevich in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper models the impact of the presence of foam on the short-wave component of surface waves and momentum exchange in the atmospheric boundary layer at high winds. First, physical experiments were carried out in a wind-wave flume in which foam can be artificially produced at the water surface. Tests were conducted under high-wind-speed conditions where equivalent 10-m wind speed ranged from 12 to 38 m s−1, with measurements made of the airflow parameters, the frequency–wavenumber spectra of the surface waves, the foam coverage of the water surface, and the distribution of the foam bubbles. Analysis of the resulting data indicates that the surface drag coefficient correlates with the fraction of foam coverage and the mean square slope (MSS) of the water surface, and that, at a certain wind speed, the MSS decreases with an increase in the fraction of foam coverage. Based on these results, we suggest a simple model for eddy viscosity in the turbulent boundary layer over a fractionally foam-covered wave surface. The measurements in a laboratory environment are shown to be in good agreement with the predictions of a quasi-linear model of the atmospheric boundary layer over a waved water surface that adopts this eddy viscosity. Adaptation of the proposed model to field conditions is discussed, and the synergetic effect of foam at the water surface and spray in the marine atmospheric boundary layer on ocean surface resistance at high winds is estimated so as to be able to explain the observed peaking dependence of the surface drag coefficient on the 10-m wind speed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuliya Troitskaya, yuliya@hydro.appl.sci-nnov.ru

Abstract

This paper models the impact of the presence of foam on the short-wave component of surface waves and momentum exchange in the atmospheric boundary layer at high winds. First, physical experiments were carried out in a wind-wave flume in which foam can be artificially produced at the water surface. Tests were conducted under high-wind-speed conditions where equivalent 10-m wind speed ranged from 12 to 38 m s−1, with measurements made of the airflow parameters, the frequency–wavenumber spectra of the surface waves, the foam coverage of the water surface, and the distribution of the foam bubbles. Analysis of the resulting data indicates that the surface drag coefficient correlates with the fraction of foam coverage and the mean square slope (MSS) of the water surface, and that, at a certain wind speed, the MSS decreases with an increase in the fraction of foam coverage. Based on these results, we suggest a simple model for eddy viscosity in the turbulent boundary layer over a fractionally foam-covered wave surface. The measurements in a laboratory environment are shown to be in good agreement with the predictions of a quasi-linear model of the atmospheric boundary layer over a waved water surface that adopts this eddy viscosity. Adaptation of the proposed model to field conditions is discussed, and the synergetic effect of foam at the water surface and spray in the marine atmospheric boundary layer on ocean surface resistance at high winds is estimated so as to be able to explain the observed peaking dependence of the surface drag coefficient on the 10-m wind speed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuliya Troitskaya, yuliya@hydro.appl.sci-nnov.ru
Save
  • Andreas, E. L, 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 14291440, https://doi.org/10.1175/1520-0485(2004)034<1429:SSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, and K. A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58, 37413751, https://doi.org/10.1175/1520-0469(2001)058<3741:EOSSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, L. Mahrt, and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 25202537, https://doi.org/10.1175/JAS-D-11-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bagnold, R. A., 1941: The Physics of Blown Sand and Desert Dunes. Methuen, 265 pp.

  • Barenblatt, G., and G. Golitsyn, 1974: Local structure of mature dust storms. J. Atmos. Sci., 31, 19171933, https://doi.org/10.1175/1520-0469(1974)031<1917:LSOMDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., T. M. J. Newley, and J. C. R. Hunt, 1993: The drag on an undulating surface induced by the flow of a turbulent boundary layer. J. Fluid Mech., 249, 557598, https://doi.org/10.1017/S0022112093001296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air-sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917946, https://doi.org/10.1175/1520-0493(2000)128<0917:RCSOHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air-sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. P., and F. Veron, 2016: Structure of the airflow above surface waves. J. Phys. Oceanogr., 46, 13771397, https://doi.org/10.1175/JPO-D-15-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, V. S. J., B. W. Ninham, and R. M. Pashley, 1993: The effect of electrolytes on bubble coalescence in water. J. Phys. Chem., 97, 10 19210 197, https://doi.org/10.1021/j100141a047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind generated waves. Philos. Trans. Roy. Soc. London, 315A, 509562, https://doi.org/10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Donelan, M., W. M. Drennan, and A. K. Magnusson, 1996: Non-stationary analysis of the directional properties of propagating waves. J. Phys. Oceanogr., 26, 19011914, https://doi.org/10.1175/1520-0485(1996)026<1901:NAOTDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Druzhinin, O. A., Yu. I. Troitskaya, and S. S. Zilitinkevich, 2012: Direct numerical simulation of a turbulent wind over a wavy water surface. J. Geophys. Res., 117, C00J05, https://doi.org/10.1029/2011JC007789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falkovich, A. I., A. P. Kain, and I. Ginis, 1995: The influence of air–sea interaction on the development and motion of a tropical cyclone: Numerical experiments with a triply nested model. Meteor. Atmos. Phys., 55, 167184, https://doi.org/10.1007/BF01029825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foreman, R. J., and S. Emeis, 2010: Revisiting the definition of the drag coefficient in the marine atmospheric boundary layer. J. Phys. Oceanogr., 40, 23252332, https://doi.org/10.1175/2010JPO4420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105, 915929, https://doi.org/10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golbraikh, E., and Y. M. Shtemler, 2016: Foam input into the drag coefficient in hurricane conditions. Dyn. Atmos. Oceans, 73, 19, https://doi.org/10.1016/j.dynatmoce.2015.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinze, J. O., 1959: Turbulence: An Introduction to its Mechanism and Theory. McGraw-Hill, 586 pp.

  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, https://doi.org/10.1029/2012JC007983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IAP RAS, 2018: Thermo-stratified wind-wave pool. Accessed 3 January 2019, http://unu.ipfran.ru/pool.

  • Janssen, P. A. E. M., 1989: Wave-induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr., 19, 745754, https://doi.org/10.1175/1520-0485(1989)019<0745:WISATD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 17071709, https://doi.org/10.1126/science.1136466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kandaurov, A. A., Yu. I. Troitskaya, D. A. Sergeev, M. I. Vdovin, and G. A. Baidakov, 2014: Average velocity field of the air flow over the water surface in a laboratory modeling of storm and hurricane conditions in the ocean. Izv., Atmos. Ocean. Phys., 50, 399, https://doi.org/10.1134/S000143381404015X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.

    • Crossref
    • Export Citation
  • Kudryavtsev, V. N., 2006: On the effect of sea drops on the atmospheric boundary layer. J. Geophys. Res., 111, C07020, https://doi.org/10.1029/2005JC002970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and V. K. Makin, 2007: Aerodynamic roughness of the sea surface at high winds. Bound.-Layer Meteor., 125, 289303, https://doi.org/10.1007/s10546-007-9184-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and V. K. Makin, 2011: Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Bound.-Layer Meteor., 140, 383410, https://doi.org/10.1007/s10546-011-9624-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kukulka, T., T. Hara, and S. E. Belcher, 2007: A model of the air-sea momentum flux and breaking wave distribution for strongly forced wind-waves. J. Phys. Oceanogr., 37, 18111828, https://doi.org/10.1175/JPO3084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhuissier, H., and E. Villermaux, 2012: Bursting bubble aerosols. J. Fluid Mech., 696, 544, https://doi.org/10.1017/jfm.2011.418.

  • Makin, V. K., 2005: A note on drag of the sea surface at hurricane winds. Bound.-Layer Meteor., 115, 169176, https://doi.org/10.1007/s10546-004-3647-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makin, V. K., V. N. Kudryavtsev, and C. Mastenbroek, 1995: Drag of the sea surface. Bound.-Layer Meteor., 73, 159182, https://doi.org/10.1007/BF00708935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1958: The equilibrium range in the spectrum of wind generated water waves. J. Fluid Mech., 4, 426434, https://doi.org/10.1017/S0022112058000550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., H. Branger, and J.-P. Giovanangeli, 1999: Air flow separation over unsteady breaking waves. Phys. Fluids, 11, 19591961, https://doi.org/10.1063/1.870058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, D. H., R. Bohac, and D. P. Stern, 2016: An assessment of the flux profile method for determining air–sea momentum and enthalpy fluxes from dropsonde data in tropical cyclones. J. Atmos. Sci., 73, 26652682, https://doi.org/10.1175/JAS-D-15-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shtemler, Y. M., E. Golbraikh, and M. Mond, 2010: Wind–wave stabilization by a foam layer between the atmosphere and the ocean. Dyn. Atmos. Oceans, 50, 115, https://doi.org/10.1016/j.dynatmoce.2009.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smol’yakov, A. V., 1973: Spectrum of the quadrupole radiation of a planar turbulent boundary layer. Akust. Zh., 19, 420425.

  • Soloviev, A. V., R. Lukas, M. Donelan, B. K. Haus, and I. Ginis, 2014: The air-sea interface and surface stress under tropical cyclones. Sci. Rep., 4, 5306, https://doi.org/10.1038/srep05306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stauffer, C. E., 1965: The measurement of surface tension by the pendant drop technique. J. Phys. Chem., 69, 19331938, https://doi.org/10.1021/j100890a024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takagaki, N., S. Komori, N. Suzuki, K. Iwano, T. Kuramoto, S. Shimada, R. Kurose, and K. Takahashi, 2012: Strong correlation between the drag coefficient and the shape of the wind sea spectrum over a broad range of wind speeds. Geophys. Res. Lett., 39, L23604, https://doi.org/10.1029/2012GL053988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takagaki, N., S. Komori, N. Suzuki, K. Iwano, and R. Kurose, 2016: Mechanism of drag coefficient saturation at strong wind speeds. Geophys. Res. Lett., 43, 98299835, https://doi.org/10.1002/2016GL070666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., and M. J. Yelland, 2001: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31, 572590, https://doi.org/10.1175/1520-0485(2001)031<0572:TDOSSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toba, Y., and M. Koga, 1986: A parameter describing overall conditions of wave breaking, whitecapping, sea-spray production and wind stress. Oceanic Whitecaps, E.C. Monahan and G. MacNiocaill, Eds., D. Reidel, 37–47.

    • Crossref
    • Export Citation
  • Troitskaya, Yu. I., and G. V. Rybushkina, 2008: Quasi-linear model of interaction of surface waves with strong and hurricane winds. Izv., Acad. Sci., USSR, Atmos. Oceanic Phys., 44, 621645, https://doi.org/10.1134/S0001433808050083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troitskaya, Yu. I., D. Sergeev, O. Ermakova, and G. Balandina, 2011: Statistical parameters of the air turbulent boundary layer over steep water waves measured by the PIV technique. J. Phys. Oceanogr., 41, 14211454, https://doi.org/10.1175/2011JPO4392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troitskaya, Yu. I., D. Sergeev, A. A. Kandaurov, G. A. Baidakov, M. A. Vdovin, and V. I. Kazakov, 2012: Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions. J. Geophys. Res., 117, C00J21, https://doi.org/10.1029/2011JC007778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troitskaya, Yu. I., D. Sergeev, O. Druzhinin, A. A. Kandaurov, O. S. Ermakova, E. V. Ezhova, I. Esau, and S. Zilitinkevich, 2014: Atmospheric boundary layer over steep surface waves. Ocean Dyn., 64, 11531161, https://doi.org/10.1007/s10236-014-0743-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troitskaya, Yu. I., A. Kandaurov, O. Ermakova, D. Kozlov, D. Sergeev, and S. Zilitinkevich, 2017a: Bag-breakup fragmentation as the dominant mechanism of sea-spray production in high winds. Sci. Rep., 7, 1614, https://doi.org/10.1038/s41598-017-01673-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troitskaya, Yu. I., O. S. Ermakova, A. A. Kandaurov, D. S. Kozlov, D. A. Sergeev, and S. S. Zilitinkevich, 2017b: Fragmentation of the “bag-breakup” type as a mechanism of the generation of sea spray at strong and hurricane winds. Dokl. Earth Sci., 477, 13301335, https://doi.org/10.1134/S1028334X17110174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troitskaya, Yu. I., O. S. Ermakova, A. A. Kandaurov, D. S. Kozlov, D. A. Sergeev, and S. S. Zilitinkevich, 2017c: Non-monotonous dependence of the ocean surface drag coefficient on the hurricane wind speed due to the fragmentation of the ocean-atmosphere interface. Dokl. Earth Sci., 477, 13731378, https://doi.org/10.1134/S1028334X17110265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troitskaya, Yu. I., O. Druzhinin, D. Kozlov, and S. Zilitinkevich, 2018a: “Bag-breakup” spume droplet generation mechanism at hurricane wind. Part I: Spray generation function. J. Phys. Oceanogr., 48, 21672188, https://doi.org/10.1175/JPO-D-17-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troitskaya, Yu. I., O. Druzhinin, D. Kozlov, and S. Zilitinkevich, 2018b: “Bag-breakup” spume droplet generation mechanism at hurricane wind. Part II: Contribution to momentum and enthalpy transfer. J. Phys. Oceanogr., 48, 21892207, https://doi.org/10.1175/JPO-D-17-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Dyke, M., 1982: An Album of Fluid Motion. 10th ed. Parabolic Press, 175 pp.

  • Veron, F., C. Hopkins, E. L. Harrison, and J. A. Mueller, 2012: Sea spray spume droplet production in high wind speeds. Geophys. Res. Lett., 39, L16602, https://doi.org/10.1029/2012GL052603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. W., and Coauthors, 2001: Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr., 31, 24722488, https://doi.org/10.1175/1520-0485(2001)031<2472:HDWSSV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., 1980: Wind-stress coefficients over sea surface near neutral conditions—A Revisit. J. Phys. Oceanogr., 10, 727740, https://doi.org/10.1175/1520-0485(1980)010<0727:WSCOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and L. Shen, 2010: Direct-simulation-based study of turbulent flow over various waving boundaries. J. Fluid Mech., 650, 131180, https://doi.org/10.1017/S0022112009993557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., 2017: A review of parametric descriptions of tropical cyclone wind-wave generation. Atmosphere, 8, 194, https://doi.org/10.3390/atmos8100194.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1075 302 47
PDF Downloads 612 145 5