• Banner, M., and W. L. Peirson, 2007: Wave breaking onset and strength for two-dimensional deep-water wave groups. J. Fluid Mech., 585, 93115, https://doi.org/10.1017/S0022112007006568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banner, M., X. Barthelemy, F. Fedele, M. Allis, A. Benetazzo, F. Dias, and W. Peirson, 2014: Linking reduced breaking crest speeds to unsteady nonlinear water wave group behavior. Phys. Rev. Lett., 112, 114502, https://doi.org/10.1103/PhysRevLett.112.114502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breivik, Ø., P. A. Janssen, and J.-R. Bidlot, 2014: Approximate Stokes drift profiles in deep water. J. Phys. Oceanogr., 44, 24332445, https://doi.org/10.1175/JPO-D-14-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., B. Fox-Kemper, and M. Hemer, 2012: Wind waves in the coupled climate system. Bull. Amer. Meteor. Soc., 93, 16511661, https://doi.org/10.1175/BAMS-D-11-00170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craik, A., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, https://doi.org/10.1017/S0022112076001420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deike, L., and W. Melville, 2018: Gas transfer by breaking waves. Geophys. Res. Lett., 45, 10 48210 492, https://doi.org/10.1029/2018GL078758.

  • Deike, L., S. Popinet, and W. K. Melville, 2015: Capillary effects on wave breaking. J. Fluid Mech., 769, 541569, https://doi.org/10.1017/jfm.2015.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deike, L., W. K. Melville, and S. Popinet, 2016: Air entrainment and bubble statistics in breaking waves. J. Fluid Mech., 801, 91129, https://doi.org/10.1017/jfm.2016.372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deike, L., L. Lenain, and W. K. Melville, 2017a: Air entrainment by breaking waves. Geophys. Res. Lett., 44, 37793787, https://doi.org/10.1002/2017GL072883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deike, L., N. Pizzo, and W. K. Melville, 2017b: Lagrangian transport by breaking surface waves. J. Fluid Mech., 829, 364391, https://doi.org/10.1017/jfm.2017.548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1998: Air-water exchange processes. Physical Processes in Lakes and Oceans, J. Imberger, Ed., Coastal and Estuarine Studies, Vol. 54, Amer. Geophys. Union, 19–36.

    • Crossref
    • Export Citation
  • Drazen, D. A., W. K. Melville, and L. Lenain, 2008: Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech., 611, 307332, https://doi.org/10.1017/S0022112008002826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedele, F., 2014: Geometric phases of water waves. EPL, 107, 69001, https://doi.org/10.1209/0295-5075/107/69001.

  • Grue, J., and J. Kolaas, 2017: Experimental particle paths and drift velocity in steep waves at finite water depth. J. Fluid Mech., 810, R1, https://doi.org/10.1017/jfm.2016.726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • John, F., 1953: Two-dimensional potential flows with a free boundary. Commun. Pure Appl. Math., 6, 497503, https://doi.org/10.1002/cpa.3160060405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kenyon, K. E., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74, 69916994, https://doi.org/10.1029/JC074i028p06991.

  • Kleiss, J. M., and W. K. Melville, 2010: Observations of wave breaking kinematics in fetch-limited seas. J. Phys. Oceanogr., 40, 25752604, https://doi.org/10.1175/2010JPO4383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech., 15, 391427, https://doi.org/10.1146/annurev.fl.15.010183.002135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenain, L., and W. K. Melville, 2017: Measurements of the directional spectrum across the equilibrium saturation ranges of wind-generated surface waves. J. Phys. Oceanogr., 47, 21232138, https://doi.org/10.1175/JPO-D-17-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and J. M. Restrepo, 1999: The wave-driven ocean circulation. J. Phys. Oceanogr., 29, 25232540, https://doi.org/10.1175/1520-0485(1999)029<2523:TWDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1994: Energy dissipation by breaking waves. J. Phys. Oceanogr., 24, 20412049, https://doi.org/10.1175/1520-0485(1994)024<2041:EDBBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melville, W. K., R. Shear, and F. Veron, 1998: Laboratory measurements of the generation and evolution of Langmuir circulations. J. Fluid Mech., 364, 3158, https://doi.org/10.1017/S0022112098001098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2009: Nonlinear formulation of the bulk surface stress over breaking waves: Feedback mechanisms from air-flow separation. Bound.-Layer Meteor., 130, 117, https://doi.org/10.1007/s10546-008-9334-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, O., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531, https://doi.org/10.1017/S0022112085002221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pizzo, N., 2017: Surfing surface gravity waves. J. Fluid Mech., 823, 316328, https://doi.org/10.1017/jfm.2017.314.

  • Pizzo, N., and W. K. Melville, 2013: Vortex generation by deep-water breaking waves. J. Fluid Mech., 734, 198218, https://doi.org/10.1017/jfm.2013.453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pizzo, N., W. K. Melville, and L. Deike, 2016: Current generation by deep-water wave breaking. J. Fluid Mech., 803, 292312, https://doi.org/10.1017/jfm.2016.473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rapp, R., and W. Melville, 1990: Laboratory measurements of deep-water breaking waves. Philos. Trans. Roy. Soc. London, 331A, 735800, https://doi.org/10.1098/rsta.1990.0098.

    • Search Google Scholar
    • Export Citation
  • Romero, L., and W. K. Melville, 2010: Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr., 40, 441465, https://doi.org/10.1175/2009JPO4127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, L., W. K. Melville, and J. M. Kleiss, 2012: Spectral energy dissipation due to surface wave breaking. J. Phys. Oceanogr., 42, 14211444, https://doi.org/10.1175/JPO-D-11-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romero, L., L. Lenain, and W. K. Melville, 2017: Observations of surface wave–current interaction. J. Phys. Oceanogr., 47, 615632, https://doi.org/10.1175/JPO-D-16-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwendeman, M., J. Thomson, and J. R. Gemmrich, 2014: Wave breaking dissipation in a young wind sea. J. Phys. Oceanogr., 44, 104127, https://doi.org/10.1175/JPO-D-12-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2004: The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations. J. Fluid Mech., 507, 143174, https://doi.org/10.1017/S0022112004008882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452, https://doi.org/10.1017/S002211200700897X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, P., and W. K. Melville, 2013: Field measurements and scaling of ocean surface wave breaking statistics. Geophys. Res. Lett., 40, 30743079, https://doi.org/10.1002/grl.50584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, P., and W. K. Melville, 2015: Field measurements of surface and near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 45, 943965, https://doi.org/10.1175/JPO-D-14-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, N., and B. Fox-Kemper, 2016: Understanding stokes forces in the wave-averaged equations. J. Geophys. Res. Oceans, 121, 35793596, https://doi.org/10.1002/2015JC011566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, E., M. Donelan, Y. Agrawal, W. Drennan, K. Kahma, A. J. Williams, P. Hwang, and S. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807, https://doi.org/10.1175/1520-0485(1996)026<0792:EOKEDU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Bremer, T., and P. Taylor, 2016: Lagrangian transport for two-dimensional deep-water surface gravity wave groups. Proc. Roy. Soc. London, 472A, 20160159, https://doi.org/10.1098/rspa.2016.0159.

    • Search Google Scholar
    • Export Citation
  • van den Bremer, T., and Ø. Breivik, 2018: Stokes drift. Philos. Trans. Roy. Soc. London, 376A, 20170104, https://doi.org/10.1098/rsta.2017.0104.

    • Search Google Scholar
    • Export Citation
  • Veron, F., and W. K. Melville, 2001: Experiments on the stability and transition of wind-driven water surfaces. J. Fluid Mech., 446, 2565.

  • Wu, J., 1975: Wind-induced drift currents. J. Fluid Mech., 68, 4970, https://doi.org/10.1017/S0022112075000687.

  • Wu, J., 1982: Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res., 87, 97049706, https://doi.org/10.1029/JC087iC12p09704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, C. J., M. L. Banner, H. Schultz, J. R. Gemmrich, R. P. Morison, D. A. LeBel, and T. Dickey, 2012: An overview of sea state conditions and air-sea fluxes during RaDyO. J. Geophys. Res., 117, C00H19, https://doi.org/10.1029/2011JC007336.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 18 18 18
PDF Downloads 17 17 17

Lagrangian Transport by Nonbreaking and Breaking Deep-Water Waves at the Ocean Surface

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 2 Department of Mechanical and Aerospace Engineering, Princeton University Princeton Environmental Institute, Princeton University, Princeton, New Jersey
Restricted access

Abstract

Using direct numerical simulations (DNS), Deike et al. found that the wave-breaking-induced mass transport, or drift, at the surface for a single breaking wave scales linearly with the slope of a focusing wave packet, and may be up to an order of magnitude larger than the prediction of the classical Stokes drift. This model for the drift due to an individual breaking wave, together with the statistics of wave breaking measured in the field, are used to compute the Lagrangian drift of breaking waves in the ocean. It is found that breaking may contribute up to an additional 30% to the predicted values of the classical Stokes drift of the wave field for the field experiments considered here, which have wind speeds ranging from 1.6 to 16 m s−1, significant wave heights in the range of 0.7–4.7 m, and wave ages (defined here as cm/u*, for the spectrally weighted phase velocity cm and the wind friction velocity u*) ranging from 16 to 150. The drift induced by wave breaking becomes increasingly more important with increasing wind friction velocity and increasing significant wave height.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nick Pizzo, npizzo@ucsd.edu

Abstract

Using direct numerical simulations (DNS), Deike et al. found that the wave-breaking-induced mass transport, or drift, at the surface for a single breaking wave scales linearly with the slope of a focusing wave packet, and may be up to an order of magnitude larger than the prediction of the classical Stokes drift. This model for the drift due to an individual breaking wave, together with the statistics of wave breaking measured in the field, are used to compute the Lagrangian drift of breaking waves in the ocean. It is found that breaking may contribute up to an additional 30% to the predicted values of the classical Stokes drift of the wave field for the field experiments considered here, which have wind speeds ranging from 1.6 to 16 m s−1, significant wave heights in the range of 0.7–4.7 m, and wave ages (defined here as cm/u*, for the spectrally weighted phase velocity cm and the wind friction velocity u*) ranging from 16 to 150. The drift induced by wave breaking becomes increasingly more important with increasing wind friction velocity and increasing significant wave height.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nick Pizzo, npizzo@ucsd.edu
Save