Response of the Salinity-Stratified Bay of Bengal to Cyclone Phailin

Dipanjan Chaudhuri Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

Search for other papers by Dipanjan Chaudhuri in
Current site
Google Scholar
PubMed
Close
,
Debasis Sengupta Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

Search for other papers by Debasis Sengupta in
Current site
Google Scholar
PubMed
Close
,
Eric D’Asaro Applied Physics Laboratory, University of Washington, Seattle, Washington

Search for other papers by Eric D’Asaro in
Current site
Google Scholar
PubMed
Close
,
R. Venkatesan National Institute of Ocean Technology, Chennai, India

Search for other papers by R. Venkatesan in
Current site
Google Scholar
PubMed
Close
, and
M. Ravichandran ESSO-National Center for Antarctic and Ocean Research, Goa, India

Search for other papers by M. Ravichandran in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cyclone Phailin, which developed over the Bay of Bengal in October 2013, was one of the strongest tropical cyclones to make landfall in India. We study the response of the salinity-stratified north Bay of Bengal to Cyclone Phailin with the help of hourly observations from three open-ocean moorings 200 km from the cyclone track, a mooring close to the cyclone track, daily sea surface salinity (SSS) from Aquarius, and a one-dimensional model. Before the arrival of Phailin, moored observations showed a shallow layer of low-salinity water lying above a deep, warm “barrier” layer. As the winds strengthened, upper-ocean mixing due to enhanced vertical shear of storm-generated currents led to a rapid increase of near-surface salinity. Sea surface temperature (SST) cooled very little, however, because the prestorm subsurface ocean was warm. Aquarius SSS increased by 1.5–3 psu over an area of nearly one million square kilometers in the north Bay of Bengal. A one-dimensional model, with initial conditions and surface forcing based on moored observations, shows that cyclone winds rapidly eroded the shallow, salinity-dominated density stratification and mixed the upper ocean to 40–50-m depth, consistent with observations. Model sensitivity experiments indicate that changes in ocean mixed layer temperature in response to Cyclone Phailin are small. A nearly isothermal, salinity-stratified barrier layer in the prestorm upper ocean has two effects. First, near-surface density stratification reduces the depth of vertical mixing. Second, mixing is confined to the nearly isothermal layer, resulting in little or no SST cooling.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-18-0051.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dipanjan Chaudhuri, dipadadachaudhuri@gmail.com

Abstract

Cyclone Phailin, which developed over the Bay of Bengal in October 2013, was one of the strongest tropical cyclones to make landfall in India. We study the response of the salinity-stratified north Bay of Bengal to Cyclone Phailin with the help of hourly observations from three open-ocean moorings 200 km from the cyclone track, a mooring close to the cyclone track, daily sea surface salinity (SSS) from Aquarius, and a one-dimensional model. Before the arrival of Phailin, moored observations showed a shallow layer of low-salinity water lying above a deep, warm “barrier” layer. As the winds strengthened, upper-ocean mixing due to enhanced vertical shear of storm-generated currents led to a rapid increase of near-surface salinity. Sea surface temperature (SST) cooled very little, however, because the prestorm subsurface ocean was warm. Aquarius SSS increased by 1.5–3 psu over an area of nearly one million square kilometers in the north Bay of Bengal. A one-dimensional model, with initial conditions and surface forcing based on moored observations, shows that cyclone winds rapidly eroded the shallow, salinity-dominated density stratification and mixed the upper ocean to 40–50-m depth, consistent with observations. Model sensitivity experiments indicate that changes in ocean mixed layer temperature in response to Cyclone Phailin are small. A nearly isothermal, salinity-stratified barrier layer in the prestorm upper ocean has two effects. First, near-surface density stratification reduces the depth of vertical mixing. Second, mixing is confined to the nearly isothermal layer, resulting in little or no SST cooling.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-18-0051.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dipanjan Chaudhuri, dipadadachaudhuri@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 699.07 KB)
Save
  • Adler, R., 2005: Estimating the benefit of TRMM tropical cyclone data in saving lives. 15th Conf. on Applied Climatology/13th Symp. on Meteorological Observations and Instrumentation, Savannah, GA, Amer. Meteor. Soc., JP2.22, https://ams.confex.com/ams/15AppClimate/techprogram/paper_91358.htm.

  • Balaguru, K., P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li, and J.-S. Hsieh, 2012: Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA, 109, 14 34314 347, https://doi.org/10.1073/pnas.1201364109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaguru, K., S. Taraphdar, L. R. Leung, and G. R. Foltz, 2014: Increase in the intensity of postmonsoon Bay of Bengal tropical cyclones. Geophys. Res. Lett., 41, 35943601, https://doi.org/10.1002/2014GL060197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaguru, K., G. R. Foltz, and L. R. Leung, 2018: Increasing magnitude of hurricane rapid intensification in the central and eastern tropical Atlantic. Geophys. Res. Lett., 45, 42384247, https://doi.org/10.1029/2018GL077597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air-sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air-sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, W. J., and T. D. Dickey, 2008: Observations and analyses of upper ocean responses to tropical storms and hurricanes in the vicinity of Bermuda. J. Geophys. Res., 113, C08009, https://doi.org/10.1029/2007JC004358.

    • Search Google Scholar
    • Export Citation
  • Chaitanya, A., and Coauthors, 2014: Salinity measurements collected by fishermen reveal a “river in the sea” flowing along the eastern coast of India. Bull. Amer. Meteor. Soc., 95, 18971908, https://doi.org/10.1175/BAMS-D-12-00243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. Deszoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15, 10431059, https://doi.org/10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1989: The decay of wind-forced mixed layer inertial oscillations due to the β effect. J. Geophys. Res., 94, 20452056, https://doi.org/10.1029/JC094iC02p02045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2003: The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561579, https://doi.org/10.1175/1520-0485(2003)033<0561:TOBLBH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., C. C. Eriksen, M. D. Levine, C. A. Paulson, P. Niiler, and P. V. Meurs, 1995: Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., 25, 29092936, https://doi.org/10.1175/1520-0485(1995)025<2909:UOICFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett., 34, L15609, https://doi.org/10.1029/2007GL030160.

    • Search Google Scholar
    • Export Citation
  • De, U., R. Dube, and G. P. Rao, 2005: Extreme weather events over India in the last 100 years. J. Indian Geophys. Union, 9 (3), 173187.

    • Search Google Scholar
    • Export Citation
  • Domingues, R., and Coauthors, 2015: Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations. Geophys. Res. Lett., 42, 71317138, https://doi.org/10.1002/2015GL065378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665669, https://doi.org/10.1038/44326.

  • Emanuel, K. A., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75104, https://doi.org/10.1146/annurev.earth.31.100901.141259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., K. Balaguru, and S. Hagos, 2018: Interbasin differences in the relationship between SST and tropical cyclone intensification. Mon. Wea. Rev., 146, 853870, https://doi.org/10.1175/MWR-D-17-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, N. L., and S. Husain, 1971: The deadliest tropical cyclone in history? Bull. Amer. Meteor. Soc., 52, 438445, https://doi.org/10.1175/1520-0477(1971)052<0438:TDTCIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 11291151, https://doi.org/10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girishkumar, M., and M. Ravichandran, 2012: The influences of ENSO on tropical cyclone activity in the Bay of Bengal during October–December. J. Geophys. Res., 117, C02033, https://doi.org/10.1029/2011JC007417.

    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., and Coauthors, 2012: Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations. Geophys. Res. Lett., 39, L20603, https://doi.org/10.1029/2012GL053335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haney, S., and Coauthors, 2012: Hurricane wake restratification rates of one-, two-and three-dimensional processes. J. Mar. Res., 70, 824850, https://doi.org/10.1357/002224012806770937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hormann, V., L. R. Centurioni, L. Rainville, C. M. Lee, and L. J. Braasch, 2014: Response of upper ocean currents to Typhoon Fanapi. Geophys. Res. Lett., 41, 39954003, https://doi.org/10.1002/2014GL060317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 41884207, https://doi.org/10.1175/2009MWR2849.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2015: Enhanced wind-driven downwelling flow in warm oceanic eddy features during the intensification of Tropical Cyclone Isaac (2012): Observations and theory. J. Phys. Oceanogr., 45, 16671689, https://doi.org/10.1175/JPO-D-14-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kotal, S. D., and S. K. Roy Bhowmik, 2013: Large-scale characteristics of rapidly intensifying tropical cyclones over the Bay of Bengal and a Rapid Intensification (RI) index. Mausam, 64 (1), 1324.

    • Search Google Scholar
    • Export Citation
  • Kotal, S. D., S. K. Bhattacharya, S. K. R. Bhowmik, Y. V. R. Rao, and A. Sharma, 2013: NWP report on Very Severe Cyclonic Storm ‘PHAILIN’ over the Bay of Bengal. India Meteorological Department Rep., 53 pp., http://nwp.imd.gov.in/NWP-REPORT-PHAILIN-2013.pdf.

  • Kotal, S., S. Bhattacharya, S. R. Bhowmik, and P. Kundu, 2014: Growth of cyclone Viyaru and Phailin—A comparative study. J. Earth Syst. Sci., 123, 16191635, https://doi.org/10.1007/s12040-014-0493-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., A. Williams, and M. G. Briscoe, 1990: Observations of shear and vertical stability from a neutrally buoyant float. J. Geophys. Res., 95, 18 12718 142, https://doi.org/10.1029/JC095iC10p18127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagerloef, G., 2012: Satellite mission monitors ocean surface salinity. Eos, Trans. Amer. Geophys. Union, 93, 233234, https://doi.org/10.1029/2012EO250001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., and T. B. Sanford, 1975: Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res., 80, 19751978, https://doi.org/10.1029/JC080i015p01975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009: Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, https://doi.org/10.1029/2008GL035815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., I.-F. Pun, and C.-C. Lien, 2014: “Category-6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophys. Res. Lett., 41, 85478553, https://doi.org/10.1002/2014GL061281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, I. D., T. Marchok, and G. A. Vecchi, 2011: Diagnostics comparing sea surface temperature feedbacks from operational hurricane forecasts to observations. J. Adv. Model. Earth Syst., 3, M11002, https://doi.org/10.1029/2011MS000075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lotliker, A. A., T. S. Kumar, V. S. Reddem, and S. Nayak, 2014: Cyclone Phailin enhanced the productivity following its passage: Evidence from satellite data. Curr. Sci., 106 (3), 360361.

    • Search Google Scholar
    • Export Citation
  • Maneesha, K., V. Murty, M. Ravichandran, T. Lee, W. Yu, and M. McPhaden, 2012: Upper ocean variability in the Bay of Bengal during the tropical cyclones Nargis and Laila. Prog. Oceanogr., 106, 4961, https://doi.org/10.1016/j.pocean.2012.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009: Ocean-atmosphere interactions during Cyclone Nargis. Eos, Trans. Amer. Geophys. Union, 90 (7), 5354, https://doi.org/10.1029/2009EO070001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., and C. Pasquero, 2012: Restratification of the upper ocean after the passage of a tropical cyclone: A numerical study. J. Phys. Oceanogr., 42 (9), 13771401, https://doi.org/10.1175/JPO-D-11-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mrvaljevic, R. K., and Coauthors, 2013: Observations of the cold wake of Typhoon Fanapi (2010). Geophys. Res. Lett., 40, 316321, https://doi.org/10.1029/2012GL054282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murty, P., K. Sandhya, P. K. Bhaskaran, F. Jose, R. Gayathri, T. B. Nair, T. S. Kumar, and S. Shenoi, 2014: A coupled hydrodynamic modeling system for PHAILIN cyclone in the Bay of Bengal. Coast. Eng., 93, 7181, https://doi.org/10.1016/j.coastaleng.2014.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neetu, S., M. Lengaigne, E. M. Vincent, J. Vialard, G. Madec, G. Samson, M. Ramesh Kumar, and F. Durand, 2012: Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal. J. Geophys. Res., 117, C12020, https://doi.org/10.1029/2012JC008433.

    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., T. Ezer, D.-P. Wang, X.-Q. Yin, and S.-J. Fan, 2007: Hurricane-induced motions and interaction with ocean currents. Cont. Shelf Res., 27, 12491263, https://doi.org/10.1016/j.csr.2007.01.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papa, F., S. K. Bala, R. K. Pandey, F. Durand, V. Gopalakrishna, A. Rahman, and W. B. Rossow, 2012: Ganga–Brahmaputra river discharge from Jason–2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal. J. Geophys. Res., 117, C11021, https://doi.org/10.1029/2012JC008158.

    • Search Google Scholar
    • Export Citation
  • Park, J. J., K. Kim, and R. W. Schmitt, 2009: Global distribution of the decay timescale of mixed layer inertial motions observed by satellite–tracked drifters. J. Geophys. Res., 114, C11010, https://doi.org/10.1029/2008JC005216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and R. C. Millard, 1970: Comparison between observed and simulated wind–generated inertial oscillations. Deep-Sea Res. Oceanogr. Abstr., 17, 813821, https://doi.org/10.1016/0011-7471(70)90043-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. O. Thompson, 1972: The deepening of the wind-mixed layer. Geophys. Astrophys. Fluid Dyn., 4, 381404, https://doi.org/10.1080/03091927208236105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prakash, K. R., and V. Pant, 2017: Upper oceanic response to tropical cyclone Phailin in the Bay of Bengal using a coupled atmosphere–ocean model. Ocean Dyn., 67, 5164, https://doi.org/10.1007/s10236-016-1020-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res. Oceans, 91, 84118427, https://doi.org/10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260, https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., J. Morzel, and P. P. Niiler, 2008: Warming of SST in the cool wake of a moving hurricane. J. Geophys. Res. Oceans, 113,C07010, https://doi.org/10.1029/2007JC004393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raghavan, S., and S. Rajesh, 2003: Trends in tropical cyclone impact: A study in Andhra Pradesh, India. Bull. Amer. Meteor. Soc., 84, 635644, https://doi.org/10.1175/BAMS-84-5-635.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayson, M., G. Ivey, N. Jones, R. Lowe, G. Wake, and J. McConochie, 2015: Near-inertial ocean response to tropical cyclone forcing on the Australian North-West Shelf. J. Geophys. Res. Oceans, 120, 77227751, https://doi.org/10.1002/2015JC010868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reul, N., J. Tenerelli, J. Boutin, B. Chapron, F. Paul, E. Brion, F. Gaillard, and O. Archer, 2012: Overview of the first SMOS sea surface salinity products. Part I: Quality assessment for the second half of 2010. IEEE Trans. Geosci. Remote Sens., 50, 16361647, https://doi.org/10.1109/TGRS.2012.2188408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. F. Price, J. B. Girton, and D. C. Webb, 2007: Highly resolved observations and simulations of the ocean response to a hurricane. Geophys. Res. Lett., 34, L13604, https://doi.org/10.1029/2007GL029679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. F. Price, and J. B. Girton, 2011: Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. J. Phys. Oceanogr., 41, 10411056, https://doi.org/10.1175/2010JPO4313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model. J. Atmos. Sci., 56, 642651, https://doi.org/10.1175/1520-0469(1999)056<0642:TOSEOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., G. Bharath Raj, and S. Shenoi, 2006: Surface freshwater from Bay of Bengal runoff and Indonesian Throughflow in the tropical Indian Ocean. Geophys. Res. Lett., 33, L22609, https://doi.org/10.1029/2006GL027573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., B. R. Goddalehundi, and D. Anitha, 2008: Cyclone-induced mixing does not cool SST in the post-monsoon North Bay of Bengal. Atmos. Sci. Lett., 9, 16, https://doi.org/10.1002/asl.162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., G. Bharath Raj, M. Ravichandran, J. Sree Lekha, and F. Papa, 2016: Near-surface salinity and stratification in the north Bay of Bengal from moored observations. Geophys. Res. Lett., 43, 44484456, https://doi.org/10.1002/2016GL068339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shankar, D., J. McCreary, W. Han, and S. Shetye, 1996: Dynamics of the East India Coastal Current: 1. Analytic solutions forced by interior Ekman pumping and local alongshore winds. J. Geophys. Res., 101, 13 97513 991, https://doi.org/10.1029/96JC00559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thadathil, P., I. Suresh, S. Gautham, S. Prasanna Kumar, M. Lengaigne, R. Rao, S. Neetu, and A. Hegde, 2016: Surface layer temperature inversion in the Bay of Bengal: Main characteristics and related mechanisms. J. Geophys. Res. Oceans, 121, 56825696, https://doi.org/10.1002/2016JC011674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomczak, M., and J. S. Godfrey, 2003: Regional Oceanography: An Introduction. 2nd ed. Elsevier, 391 pp.

  • Van Meurs, P., 1998: Interactions between near-inertial mixed layer currents and the mesoscale: The importance of spatial variabilities in the vorticity field. J. Phys. Oceanogr., 28, 13631388, https://doi.org/10.1175/1520-0485(1998)028<1363:IBNIML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venkatesan, R., V. Shamji, G. Latha, S. Mathew, R. Rao, A. Muthiah, and M. Atmanand, 2013: In situ ocean subsurface time-series measurements from OMNI buoy network in the Bay of Bengal. Curr. Sci., 104 (9), 11661177.

    • Search Google Scholar
    • Export Citation
  • Venkatesan, R., and Coauthors, 2014: Signatures of very severe cyclonic storm Phailin in met–ocean parameters observed by moored buoy network in the Bay of Bengal. Curr. Sci., 107 (4), 588595.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., K. A. Emanuel, M. Lengaigne, J. Vialard, and G. Madec, 2014: Influence of upper ocean stratification interannual variability on tropical cyclones. J. Adv. Model. Earth Syst., 6, 680699, https://doi.org/10.1002/2014MS000327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vissa, N. K., A. Satyanarayana, and B. P. Kumar, 2013: Response of upper ocean and impact of barrier layer on Sidr cyclone induced sea surface cooling. Ocean Sci. J., 48, 279288, https://doi.org/10.1007/s12601-013-0026-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 2008: Myanmar’s deadly daffodil. Nat. Geosci., 1, 488490, https://doi.org/10.1038/ngeo257.

  • Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847850, https://doi.org/10.1126/science.288.5467.847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2013: Impact of a warm ocean eddy’s circulation on hurricane-induced sea surface cooling with implications for hurricane intensity. Mon. Wea. Rev., 141, 9971021, https://doi.org/10.1175/MWR-D-12-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zedler, S., T. Dickey, S. Doney, J. Price, X. Yu, and G. Mellor, 2002: Analyses and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring site: 13–23 August 1995. J. Geophys. Res. Oceans, 107, 3232, https://doi.org/10.1029/2001JC000969.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2179 616 36
PDF Downloads 1824 315 15