Tidal Conversion and Dissipation at Steep Topography in a Channel Poleward of the Critical Latitude

Kenneth G. Hughes School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Kenneth G. Hughes in
Current site
Google Scholar
PubMed
Close
and
Jody M. Klymak School of Earth and Ocean Sciences, and Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by Jody M. Klymak in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In high-latitude fjords and channels in the Canadian Arctic Archipelago, walls support radiating internal tides as Kelvin waves. Such waves allow for significant barotropic to baroclinic tidal energy conversion, which is otherwise small or negligible when poleward of the critical latitude. This fundamentally three-dimensional system of a subinertial channel is investigated with a suite of numerical simulations in rectangular channels of varying width featuring idealized, isolated ridges. Even in channels as wide as 5 times the internal Rossby radius, tidal conversion can remain as high as predicted by an equivalent two-dimensional, nonrotating system. Curves of tidal conversion as a function of channel width, however, do not vary monotonically. Instead, they display peaks and nulls owing to interference between the Kelvin waves along the wall and similar waves that propagate along the ridge flanks, the wavelengths of which can be estimated from linear theory to guide prediction. Because the wavelengths are comparable to width scales of Arctic channels and fjords, the interference will play a first-order role in tidal energy budgets and may consequently influence the stability of glaciers, the ventilation of deep layers, the locations of sediment deposition, and the fate of freshwater exiting the Arctic Ocean.

Current affiliation: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kenneth G. Hughes, khughes@ceoas.oregonstate.edu

Abstract

In high-latitude fjords and channels in the Canadian Arctic Archipelago, walls support radiating internal tides as Kelvin waves. Such waves allow for significant barotropic to baroclinic tidal energy conversion, which is otherwise small or negligible when poleward of the critical latitude. This fundamentally three-dimensional system of a subinertial channel is investigated with a suite of numerical simulations in rectangular channels of varying width featuring idealized, isolated ridges. Even in channels as wide as 5 times the internal Rossby radius, tidal conversion can remain as high as predicted by an equivalent two-dimensional, nonrotating system. Curves of tidal conversion as a function of channel width, however, do not vary monotonically. Instead, they display peaks and nulls owing to interference between the Kelvin waves along the wall and similar waves that propagate along the ridge flanks, the wavelengths of which can be estimated from linear theory to guide prediction. Because the wavelengths are comparable to width scales of Arctic channels and fjords, the interference will play a first-order role in tidal energy budgets and may consequently influence the stability of glaciers, the ventilation of deep layers, the locations of sediment deposition, and the fate of freshwater exiting the Arctic Ocean.

Current affiliation: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kenneth G. Hughes, khughes@ceoas.oregonstate.edu
Save
  • Adcroft, A., C. Hill, J.-M. Campin, J. Marshall, and P. Heimbach, 2004: Overview of the formulation and numerics of the MIT GCM. Proc. ECMWF Seminar Series on Numerical Methods: Recent Developments in Numerical Methods for Atmosphere and Ocean Modelling, Reading, United Kingdom, ECMWF, 139–149, https://www.ecmwf.int/node/7642.

  • Arneborg, L., P. Jansson, A. Staalstrøm, and G. Broström, 2017: Tidal energy loss, internal tide radiation, and local dissipation for two-layer tidal flow over a sill. J. Phys. Oceanogr., 47, 15211538, https://doi.org/10.1175/JPO-D-16-0148.1.

    • Search Google Scholar
    • Export Citation
  • Balmforth, N. J., and T. Peacock, 2009: Tidal conversion by supercritical topography. J. Phys. Oceanogr., 39, 19651974, https://doi.org/10.1175/2009JPO4057.1.

    • Search Google Scholar
    • Export Citation
  • Berntsen, J., J. Xing, and A. M. Davies, 2009: Numerical studies of flow over a sill: Sensitivity of the non-hydrostatic effects to the grid size. Ocean Dyn., 59, 10431059, https://doi.org/10.1007/s10236-009-0227-0.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 1989: The effect of stratification on seamount-trapped waves. Deep-Sea Res., 36, 825844, https://doi.org/10.1016/0198-0149(89)90031-9.

    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2006: Coastal-trapped waves with finite bottom friction. Dyn. Atmos. Oceans, 41, 172190, https://doi.org/10.1016/j.dynatmoce.2006.05.001.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., S. Legg, and J. Klymak, 2012: Double-ridge internal tide interference and its effect on dissipation in Luzon Strait. J. Phys. Oceanogr., 42, 13371356, https://doi.org/10.1175/JPO-D-11-0210.1.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1982: On the failure of Laplace’s tidal equations to model subinertial motions at a discontinuity in depth. Dyn. Atmos. Oceans, 7, 116, https://doi.org/10.1016/0377-0265(82)90002-1.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., and M. C. Hendershott, 1982: Shelf wave dispersion in a geophysical ocean. Dyn. Atmos. Oceans, 7, 1731, https://doi.org/10.1016/0377-0265(82)90003-3.

    • Search Google Scholar
    • Export Citation
  • Cottier, F. R., F. Nilsen, R. Skogseth, V. Tverberg, J. Skarðhamar, and H. Svendsen, 2010: Arctic fjords: A review of the oceanographic environment and dominant physical processes. Spec. Publ. Geol. Soc. London, 344, 3550, https://doi.org/10.1144/SP344.4.

    • Search Google Scholar
    • Export Citation
  • Dale, A. C., and T. J. Sherwin, 1996: The extension of baroclinic coastal-trapped wave theory to superinertial frequencies. J. Phys. Oceanogr., 26, 23052315, https://doi.org/10.1175/1520-0485(1996)026<2305:TEOBCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dale, A. C., J. M. Huthnance, and T. J. Sherwin, 2001: Coastal-trapped waves and tides at near-inertial frequencies. J. Phys. Oceanogr., 31, 29582970, https://doi.org/10.1175/1520-0485(2001)031<2958:CTWATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Young, B., and S. Pond, 1989: Partition of energy loss from the barotropic tide in fjords. J. Phys. Oceanogr., 19, 246252, https://doi.org/10.1175/1520-0485(1989)019<0246:POELFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 2000: Small-amplitude coastally trapped disturbances and the reduced-gravity shallow-water approximation. Quart. J. Roy. Meteor. Soc., 126, 26712689, https://doi.org/10.1002/qj.49712656904.

    • Search Google Scholar
    • Export Citation
  • Falahat, S., and J. Nycander, 2015: On the generation of bottom-trapped internal tides. J. Phys. Oceanogr., 45, 526545, https://doi.org/10.1175/JPO-D-14-0081.1.

    • Search Google Scholar
    • Export Citation
  • Fer, I., M. Müller, and A. K. Peterson, 2015: Tidal forcing, energetics, and mixing near the Yermak Plateau. Ocean Sci., 11, 287304, https://doi.org/10.5194/os-11-287-2015.

    • Search Google Scholar
    • Export Citation
  • Fer, I., E. Darelius, and K. B. Daae, 2016: Observations of energetic turbulence on the Weddell Sea continental slope. Geophys. Res. Lett., 43, 760766, https://doi.org/10.1002/2015GL067349.

    • Search Google Scholar
    • Export Citation
  • Freeland, H. J., and D. M. Farmer, 1980: Circulation and energetics of a deep, strongly stratified inlet. Can. J. Fish. Aquat. Sci., 37, 13981410, https://doi.org/10.1139/f80-179.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J., and J. M. Klymak, 2015: Dissipation of internal wave energy generated on a critical slope. J. Phys. Oceanogr., 45, 22212238, https://doi.org/10.1175/JPO-D-14-0236.1.

    • Search Google Scholar
    • Export Citation
  • Gerkema, T., and V. I. Shrira, 2005: Near-inertial waves on the “nontraditional” β plane. J. Geophys. Res., 110, C01003, https://doi.org/10.1029/2004JC002519.

    • Search Google Scholar
    • Export Citation
  • Hughes, K. G., J. M. Klymak, W. J. Williams, and H. Melling, 2018: Tidally modulated internal hydraulic flow and energetics in the central Canadian Arctic Archipelago. J. Geophys. Res., 123, 52105299, https://doi.org/10.1029/2018JC013770.

    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1975: On trapped waves over a continental shelf. J. Fluid Mech., 69, 689704, https://doi.org/10.1017/S0022112075001632.

    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1978: On coastal trapped waves: Analysis and numerical calculation by inverse iteration. J. Phys. Oceanogr., 8, 7492, https://doi.org/10.1175/1520-0485(1978)008<0074:OCTWAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., L. Mysak, and D.-P. Wang, 1986: Coastal trapped waves. Baroclinic Processes on Continental Shelves, C. N. K. Mooers, Ed., Coastal and Estuarine Sciences, Vol. 3, Amer. Geophys. Union, 1–18.

  • Inall, M. E., and T. P. Rippeth, 2002: Dissipation of tidal energy and associated mixing in a wide fjord. Environ. Fluid Mech., 2, 219240, https://doi.org/10.1023/A:1019846829875.

    • Search Google Scholar
    • Export Citation
  • Inall, M., T. Rippeth, C. Griffiths, and P. Wiles, 2005: Evolution and distribution of TKE production and dissipation within stratified flow over topography. Geophys. Res. Lett., 32, L08607, https://doi.org/10.1029/2004GL022289.

    • Search Google Scholar
    • Export Citation
  • Johnson, E. R., and J. T. Rodney, 2011: Spectral methods for coastal-trapped waves. Cont. Shelf Res., 31, 14811489, https://doi.org/10.1016/j.csr.2011.06.009.

    • Search Google Scholar
    • Export Citation
  • Kang, D., 2011: Energetics and dynamics of internal tides in Monterey Bay using numerical simulations. Ph.D. dissertation, Stanford University, 170 pp.

  • Kang, D., and O. Fringer, 2012: Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr., 42, 272290, https://doi.org/10.1175/JPO-D-11-039.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., and J. D. Nash, 2010: Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, https://doi.org/10.1029/2010GL045598.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., N. L. Jones, and J. D. Nash, 2013: A coupled model for Laplace’s tidal equations in a fluid with one horizontal dimension and variable depth. J. Phys. Oceanogr., 43, 17801797, https://doi.org/10.1175/JPO-D-12-0147.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and M. C. Gregg, 2004: Tidally generated turbulence over the Knight Inlet Sill. J. Phys. Oceanogr., 34, 11351151, https://doi.org/10.1175/1520-0485(2004)034<1135:TGTOTK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and S. M. Legg, 2010: A simple mixing scheme for models that resolve breaking internal waves. Ocean Modell., 33, 224234, https://doi.org/10.1016/j.ocemod.2010.02.005.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., S. Legg, and R. Pinkel, 2010: A simple parameterization of turbulent tidal mixing near supercritical topography. J. Phys. Oceanogr., 40, 20592074, https://doi.org/10.1175/2010JPO4396.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. Buijsman, S. Legg, and R. Pinkel, 2013: Parameterizing surface and internal tide scattering and breaking on supercritical topography: the one- and two-ridge cases. J. Phys. Oceanogr., 43, 13801397, https://doi.org/10.1175/JPO-D-12-061.1.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., H. L. Simmons, D. Braznikov, S. Kelly, J. A. MacKinnon, M. H. Alford, R. Pinkel, and J. D. Nash, 2016: Reflection of linear internal tides from realistic topography: The Tasman continental slope. J. Phys. Oceanogr., 46, 33213337, https://doi.org/10.1175/JPO-D-16-0061.1.

    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., M. C. Hendershott, and C. D. Winant, 2001: Observations and modeling of coastal internal waves driven by a diurnal sea breeze. J. Geophys. Res., 106, 19 71519 729, https://doi.org/10.1029/2001JC000811.

    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., and W. R. Young, 2003: Tidal conversion at a very steep ridge. J. Fluid Mech., 495, 175191, https://doi.org/10.1017/S0022112003006098.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Masunaga, E., O. B. Fringer, Y. Kitade, H. Yamazaki, and S. M. Gallager, 2017: Dynamics and energetics of trapped diurnal internal Kelvin waves around a midlatitude island. J. Phys. Oceanogr., 47, 24792498, https://doi.org/10.1175/JPO-D-16-0167.1.

    • Search Google Scholar
    • Export Citation
  • McLaughlin, F. A., E. C. Carmack, R. G. Ingram, W. J. Williams, and C. Michel, 2004: Oceanography of the Northwest Passage. The Global Coastal Ocean: Interdisciplinary Regional Studies and Syntheses, A. R. Robinson and K. H. Brink, Eds., The Sea—Ideas and Observations on Progress in the Study of the Seas, Vol. 14B, Harvard University Press, 1211–1242.

  • Meyer, A., I. Fer, A. Sundfjord, and A. K. Peterson, 2017: Mixing rates and vertical heat fluxes north of Svalbard from Arctic winter to spring. J. Geophys. Res. Oceans, 122, 45694586, https://doi.org/10.1002/2016JC012441.

    • Search Google Scholar
    • Export Citation
  • Mihanović, H., G. Beg Paklar, and M. Orlić, 2014: Resonant excitation of island-trapped waves in a shallow, seasonally stratified sea. Cont. Shelf Res., 77, 2437, https://doi.org/10.1016/j.csr.2014.01.014.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Musgrave, R. C., R. Pinkel, J. A. MacKinnon, M. R. Mazloff, and W. R. Young, 2016: Stratified tidal flow over a tall ridge above and below the turning latitude. J. Fluid Mech., 793, 933957, https://doi.org/10.1017/jfm.2016.150.

    • Search Google Scholar
    • Export Citation
  • Musgrave, R. C., J. A. MacKinnon, R. Pinkel, A. F. Waterhouse, J. Nash, and S. M. Kelly, 2017: The influence of subinertial internal tides on near-topographic turbulence at the Mendocino Ridge: Observations and modeling. J. Phys. Oceanogr., 47, 21392154, https://doi.org/10.1175/JPO-D-16-0278.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, T., T. Awaji, T. Hatayama, K. Akitomo, T. Takizawa, T. Kono, Y. Kawasaki, and M. Fukasawa, 2000: The generation of large-amplitude unsteady lee waves by subinertial K1 tidal flow: A possible vertical mixing mechanism in the Kuril Straits. J. Phys. Oceanogr., 30, 16011621, https://doi.org/10.1175/1520-0485(2000)030<1601:TGOLAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2009: An abyssal recipe. Ocean Modell., 30, 298309, https://doi.org/10.1016/j.ocemod.2009.07.006.

  • Pratt, L. J., and J. A. Whitehead, 2008: Rotating Hydraulics: Nonlinear Topographic Effects in the Ocean and Atmosphere. Springer, 589 pp., https://doi.org/10.1007/978-0-387-49572-9.

  • Rainville, L., and P. Winsor, 2008: Mixing across the Arctic Ocean: Microstructure observations during the Beringia 2005 Expedition. Geophys. Res. Lett., 35, L08606, https://doi.org/10.1029/2008GL033532.

    • Search Google Scholar
    • Export Citation
  • Rippeth, T. P., B. J. Lincoln, Y.-D. Lenn, J. A. M. Green, A. Sundfjord, and S. Bacon, 2015: Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography. Nat. Geosci., 8, 191194, https://doi.org/10.1038/ngeo2350.

    • Search Google Scholar
    • Export Citation
  • Rippeth, T. P., V. Vlasenko, N. Stashchuk, B. D. Scannell, J. A. M. Green, B. J. Lincoln, and S. Bacon, 2017: Tidal conversion and mixing poleward of the critical latitude (an Arctic case study). Geophys. Res. Lett., 44, 12 34912 357, https://doi.org/10.1002/2017GL075310.

    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1999: The vertical structure of linear coastal-trapped disturbances. Mon. Wea. Rev., 127, 201213, https://doi.org/10.1175/1520-0493(1999)127<0201:TVSOLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sarkar, S., and A. Scotti, 2017: From topographic internal gravity waves to turbulence. Annu. Rev. Fluid Mech., 49, 195220, https://doi.org/10.1146/annurev-fluid-010816-060013.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and E. Johnson, 1997: Instability in stratified rotating shear flow along ridges. J. Mar. Res., 55, 915933, https://doi.org/10.1357/0022240973224201.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, https://doi.org/10.1029/2002GL015633.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., S. Stringer, C. Garrett, and D. Perrault-Joncas, 2003: The generation of internal tides at abrupt topography. Deep-Sea Res. I, 50, 9871003, https://doi.org/10.1016/S0967-0637(03)00096-7.

    • Search Google Scholar
    • Export Citation
  • Stigebrandt, A., and J. Aure, 1989: Vertical mixing in basin waters of fjords. J. Phys. Oceanogr., 19, 917926, https://doi.org/10.1175/1520-0485(1989)019<0917:VMIBWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Støylen, E., and I. Fer, 2014: Tidally induced internal motion in an Arctic fjord. Nonlinear Processes Geophys., 21, 87100, https://doi.org/10.5194/npg-21-87-2014.

    • Search Google Scholar
    • Export Citation
  • Tanaka, Y., T. Hibiya, Y. Niwa, and N. Iwamae, 2010: Numerical study of K1 internal tides in the Kuril straits. J. Geophys. Res., 115, C09016, https://doi.org/10.1029/2009JC005903.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1919: Tidal friction in the Irish Sea. Philos. Trans. Roy. Soc. London, A220, 133, https://doi.org/10.1098/rsta.1920.0001.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 300 pp.

  • Vlasenko, V., N. Stashchuk, K. Hutter, and K. Sabinin, 2003: Nonlinear internal waves forced by tides near the critical latitude. Deep-Sea Res. I, 50, 317338, https://doi.org/10.1016/S0967-0637(03)00018-9.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 737 212 64
PDF Downloads 668 157 9