Origin and Attenuation of Mesoscale Structure in Circumpolar Deep Water Intrusions to an Antarctic Shelf

Darren C. McKee Division of Ocean and Climate Physics, Lamont–Doherty Earth Observatory of Columbia University, Palisades, and Department of Earth and Environmental Sciences, Columbia University, New York, New York

Search for other papers by Darren C. McKee in
Current site
Google Scholar
PubMed
Close
,
Douglas G. Martinson Division of Ocean and Climate Physics, Lamont–Doherty Earth Observatory of Columbia University, Palisades, and Department of Earth and Environmental Sciences, Columbia University, New York, New York

Search for other papers by Douglas G. Martinson in
Current site
Google Scholar
PubMed
Close
, and
Oscar Schofield Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Oscar Schofield in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cross-isobath transport of Upper Circumpolar Deep Water (UCDW) provides a major source of heat to the Antarctic continental shelves. Adaptive sampling with a Slocum glider revealed that the UCDW regularly intrudes onto the western Antarctic Peninsula shelf within mesoscale eddies, and a linear stability analysis of the shelf-break current upstream confirmed eddy length scales and vertical structure are consistent with the baroclinic instability of the current. The properties of the most unstable mode are insensitive to current orientation but sensitive to bottom slope in accordance with modified Eady theory. Once on the shelf, the eddies’ core properties mix with ambient shelf water to form modified CDW (mCDW). Concurrent shipboard CTD and ADCP data are used to diagnose the responsible mixing processes and highlight the importance of thermohaline intrusions. The genesis mechanism of the interleaving layers cannot be confirmed, however a simple analytic model suggests the upper limit contribution of advection by internal waves cannot account for the observed temperature variance unless the cross-eddy temperature gradient is large. Data-adaptive sampling of an eddy with the glider revealed it lost heat across two isopycnals and a fixed radius at a rate of 7 × 109 J s−1 over 3.9 days. This rate is corroborated by a diffusion model initialized with the eddy’s initial hydrographic properties and informed by the heat fluxes parameterized from the shipboard data. The results suggest eddies predominately lose heat laterally and downward, which preserves subsurface heat for melting of marine-terminating glaciers.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Darren C. McKee, dmckee@ldeo.columbia.edu

Abstract

Cross-isobath transport of Upper Circumpolar Deep Water (UCDW) provides a major source of heat to the Antarctic continental shelves. Adaptive sampling with a Slocum glider revealed that the UCDW regularly intrudes onto the western Antarctic Peninsula shelf within mesoscale eddies, and a linear stability analysis of the shelf-break current upstream confirmed eddy length scales and vertical structure are consistent with the baroclinic instability of the current. The properties of the most unstable mode are insensitive to current orientation but sensitive to bottom slope in accordance with modified Eady theory. Once on the shelf, the eddies’ core properties mix with ambient shelf water to form modified CDW (mCDW). Concurrent shipboard CTD and ADCP data are used to diagnose the responsible mixing processes and highlight the importance of thermohaline intrusions. The genesis mechanism of the interleaving layers cannot be confirmed, however a simple analytic model suggests the upper limit contribution of advection by internal waves cannot account for the observed temperature variance unless the cross-eddy temperature gradient is large. Data-adaptive sampling of an eddy with the glider revealed it lost heat across two isopycnals and a fixed radius at a rate of 7 × 109 J s−1 over 3.9 days. This rate is corroborated by a diffusion model initialized with the eddy’s initial hydrographic properties and informed by the heat fluxes parameterized from the shipboard data. The results suggest eddies predominately lose heat laterally and downward, which preserves subsurface heat for melting of marine-terminating glaciers.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Darren C. McKee, dmckee@ldeo.columbia.edu
Save
  • Amante, C., and B. W. Eakins, 2009: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, National Geophysical Data Center, 25 pp., https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf.

  • Beardsley, R. C., R. Limeburner, and B. W. Owens, 2004: Drifter measurements of surface currents near Marguerite Bay on the western Antarctic Peninsula shelf during austral summer and fall, 2001 and 2002. Deep-Sea Res. II, 51, 19471964, https://doi.org/10.1016/j.dsr2.2004.07.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumsack, S. L., and P. J. Gierasch, 1972: Mars: The effects of topography on baroclinic instability. J. Atmos. Sci., 29, 10811089, https://doi.org/10.1175/1520-0469(1972)029<1081:MTEOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormans, M., 1992a: Effect of density ratio on double diffusive interleaving. Deep-Sea Res., 39, 871884, https://doi.org/10.1016/0198-0149(92)90126-E.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bormans, M., 1992b: An experimental study on the formation and survival of stratified subsurface eddies. J. Geophys. Res., 97, 20 15520 167, https://doi.org/10.1029/92JC01973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, A. J., P. R. Holland, M. P. Meredith, T. Murray, A. Luckman, and D. G. Vaughan, 2016: Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science, 353, 283286, https://doi.org/10.1126/science.aae0017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Couto, N., D.G. Martinson, J. Kohut, and O. Schofield, 2017: Distribution of Upper Circumpolar Deep Water on the warming continental shelf of the West Antarctic Peninsula. J. Geophys. Res. Oceans, 122, 53065315, https://doi.org/10.1002/2017JC012840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewey, R., R. Muench, and J. Gunn, 1999: Mixing and vertical heat flux estimates in the Arctic Eurasian Basin. J. Mar. Syst., 21, 199205, https://doi.org/10.1016/S0924-7963(99)00014-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., and J. M. Klinck, 2004: A model study of circulation and cross-shelf exchange on the west Antarctic Peninsula continental shelf. Deep-Sea Res. II, 51, 20032022, https://doi.org/10.1016/j.dsr2.2004.07.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., J. M. Klinck, and W. O. Smith Jr., 2011: A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep-Sea Res. II, 58, 15081523, https://doi.org/10.1016/j.dsr2.2010.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., J. M. Klinck, and E. E. Hofmann, 2012: Sensitivity of circumpolar deep water transport and ice shelf basal melt along the West Antarctic Peninsula to changes in the winds. J. Climate, 25, 47994816, https://doi.org/10.1175/JCLI-D-11-00307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eveleth, R., N. Cassar, S. C. Doney, D. R. Munro, and C. Sweeney, 2017: Biological and physical controls on O2/Ar, Ar, and pCO2 variability at the Western Antarctic Peninsula and in the Drake Passage. Deep-Sea Res. II, 139, 7788, https://doi.org/10.1016/j.dsr2.2016.05.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flament, P., 2002: A state variable for characterizing water masses and their diffusive stability: Spiciness. Prog. Oceanogr., 54, 493501, https://doi.org/10.1016/S0079-6611(02)00065-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garau, B., S. Ruiz, W. G. Zhang, A. Pascual, E. Heslop, J. Kerfoot, and J. Tintoré, 2011: Thermal lag correction on Slocum CTD glider data. J. Atmos. Oceanic Technol., 28, 10651071, https://doi.org/10.1175/JTECH-D-10-05030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1982: On spindown in the ocean interior. J. Phys. Oceanogr., 12, 989993, https://doi.org/10.1175/1520-0485(1982)012<0989:OSITOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1975: Space-time scales of internal waves: A progress report. J. Geophys. Res., 80, 291297, https://doi.org/10.1029/JC080i003p00291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1971: Oceanography of Antarctic waters. Antarct. Res. Ser., 15, 169203, https://doi.org/10.1029/AR015p0169.

  • Gordon, R. L., and N. F. Marshall, 1976: Submarine canyons: Internal wave traps? Geophys. Res. Lett., 3, 622624, https://doi.org/10.1029/GL003i010p00622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouretski, V. V., and K. P. Koltermann, 2004: WOCE global hydrographic climatology: A technical report. Bundesamt für Seeschifffahrt und Hydrographie Rep. 35, 52 pp.

  • Graham, J. A., M. S. Dinniman, and J. M. Klinck, 2016: Impact of model resolution for on-shelf heat transport along the West Antarctic Peninsula. J. Geophys. Res., 121, 78807897, https://doi.org/10.1002/2016JC011875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, https://doi.org/10.1029/JC094iC07p09686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., and T. B. Sanford, 1988: The dependence of turbulent dissipation on stratification in a diffusively stable thermocline. J. Geophys. Res., 93, 12 38112 392, https://doi.org/10.1029/JC093iC10p12381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515, https://doi.org/10.1038/nature01507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hebert, D., N. Oakey, and B. R. Ruddick, 1990: Evolution of a Mediterranean salt lens: Scalar properties. J. Phys. Oceanogr., 20, 14681483, https://doi.org/10.1175/1520-0485(1990)020<1468:EOAMSL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, S. L., J. Hyatt, and L. Padman, 2004: Mixing in the pycnocline over the western Antarctic Peninsula Shelf during Southern Ocean GLOBEC. Deep-Sea Res. II, 51, 1965, https://doi.org/10.1016/j.dsr2.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isachsen, P. E., 2011: Baroclinic instability and eddy tracer transport across sloping bottom topography: How well does a modified Eady model do in primitive equation simulations? Ocean Modell., 39, 183199, https://doi.org/10.1016/j.ocemod.2010.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1997: A neutral density variable for the world’s oceans. J. Phys. Oceanogr., 27, 237263, https://doi.org/10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., 1977: A note on the lateral mixing of water masses. J. Phys. Oceanogr., 7, 626629, https://doi.org/10.1175/1520-0485(1977)007<0626:ANOTLM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinck, J. M., 1998: Heat and salt changes on the continental shelf west of the Antarctic Peninsula between January 1993 and January 1994. J. Geophys. Res., 103, 76177636, https://doi.org/10.1029/98JC00369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinck, J. M., E. E. Hofmann, R. C. Beardsley, B. Salihoglu, and S. Howard, 2004: Water-mass properties and circulation on the West Antarctic Peninsula continental shelf in austral fall and winter 2001. Deep-Sea Res. II, 51, 19251946, https://doi.org/10.1016/j.dsr2.2004.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, https://doi.org/10.1175/JPO2926.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, M. D., 2002: A modification of the Garrett–Munk internal wave spectrum. J. Phys. Oceanogr., 32, 31663181, https://doi.org/10.1175/1520-0485(2002)032<3166:AMOTGM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., and R. A. Iannuzzi, 1998: Antarctic ocean-ice interaction: Implications from ocean bulk property distributions in the Weddell Gyre. Antarctic Sea Ice: Physical Processes, Interactions and Variability, M. Jeffries, Ed., Antarctic Research Series, Vol. 74, Amer. Geophys. Union, 243–271.

    • Crossref
    • Export Citation
  • Martinson, D. G., and D. C. McKee, 2012: Transport of warm Upper Circumpolar Deep Water onto the western Antarctic Peninsula continental shelf. Ocean Sci., 8, 433442, https://doi.org/10.5194/os-8-433-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinson, D. G., S. E. Stammerjohn, R. A. Iannuzzi, R. C. Smith, and M. Vernet, 2008: Western Antarctic Peninsula physical oceanography and spatio-temporal variability. Deep-Sea Res. II, 55, 19641987, https://doi.org/10.1016/j.dsr2.2008.04.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1985a: Double-diffusive interleaving. Part I: Linear stability analysis. J. Phys. Oceanogr., 15, 15321541, https://doi.org/10.1175/1520-0485(1985)015<1532:DDIPIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 1985b: Double-diffusive interleaving. Part II: Finite amplitude steady state interleaving. J. Phys. Oceanogr., 15, 15421556, https://doi.org/10.1175/1520-0485(1985)015<1542:DDIPIF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moffat, C., and M. Meredith, 2018: Shelf-ocean exchange and hydrography west of the Antarctic Peninsula: A review. Philos. Trans. Roy. Soc. A., 376, 20170164, https://doi.org/10.1098/rsta.2017.0164.

    • Search Google Scholar
    • Export Citation
  • Moffat, C., B. Owens, and R. C. Beardsley, 2009: On the characteristics of Circumpolar Deep Water intrusions to the west Antarctic Peninsula Continental Shelf. J. Geophys. Res., 114, C05017, https://doi.org/10.1029/2008JC004955.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, https://doi.org/10.1126/science.1090929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth, and W. D. Nowlin, 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42, 641673, https://doi.org/10.1016/0967-0637(95)00021-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 14431451, https://doi.org/10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

    • Crossref
    • Export Citation
  • Pelland, N. A., C. C. Eriksen, and C. M. Lee, 2013: Subthermocline eddies over the Washington continental slope as observed by seagliders, 2003–09. J. Phys. Oceanogr., 43, 20252053, https://doi.org/10.1175/JPO-D-12-086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1954: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 6, 273286, https://doi.org/10.1111/j.2153-3490.1954.tb01123.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulin, F. J., A. Stegner, M. Hernandez-Arencibia, A. Marrero-Diaz, and P. Sangra, 2014: Steep shelf stabilization of the Bransfield coastal current: linear stability analysis. J. Phys. Oceanogr., 44, 714732, https://doi.org/10.1175/JPO-D-13-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., K. J. Heywood, A. F. Thompson, and S. Aoki, 2014: Multidecadal warming of Antarctic waters. Science, 346, 12271231, https://doi.org/10.1126/science.1256117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schofield, O., and Coauthors, 2007: Slocum gliders: Robust and ready. J. Field Robot., 24, 473485, https://doi.org/10.1002/rob.20200.

  • Smith, D. A., E. E. Hofmann, J. M. Klinck, and C. M. Lascara, 1999: Hydrography and circulation of the West Antarctic Peninsula Continental Shelf. Deep-Sea Res. I, 46, 925949, https://doi.org/10.1016/S0967-0637(98)00103-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res., 65, 655683, https://doi.org/10.1357/002224007783649484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and R. Ferrari, 2009: The production and dissipation of compensated thermohaline variance by mesoscale stirring. J. Phys. Oceanogr., 39, 24772501, https://doi.org/10.1175/2009JPO4103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. C., and Coauthors, 1995: The Palmer LTER: A long-term ecological research program at Palmer Station, Antarctica. Oceanography, 8, 7786, https://doi.org/10.5670/oceanog.1995.01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spence, P., S. M. Griffies, M. H. England, A. M. C. Hogg, O. A. Saenko, and N. C. Jourdain, 2014: Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett., 41, 46014610, https://doi.org/10.1002/2014GL060613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spence, P., R. M. Holmes, A. M. Hogg, S. M. Griffies, K. D. Stewart, and M. H. England, 2017: Localized rapid warming of West Antarctic subsurface waters by remote winds. Nat. Climate Change, 7, 595603, https://doi.org/10.1038/nclimate3335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, A. A., D. M. Holland, and L. P. Nadeau, 2015: Instability of ocean jets along the Antarctic continental slope. J. Phys. Oceanogr., 45, 23152338, https://doi.org/10.1175/JPO-D-14-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2015: Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break. Geophys. Res. Lett., 42, 432440, https://doi.org/10.1002/2014GL062281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., A. Klocker, and D. Menemenlis, 2018: Circum-Antarctic shoreward heat transport derived from an eddy- and tide-resolving simulation. Geophys. Res. Lett., 45, 834845, https://doi.org/10.1002/2017GL075677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St-Laurent, P., J. M. Klinck, and M. S. Dinniman, 2013: On the role of coastal troughs in the circulation of warm Circumpolar Deep Water on Antarctic shelves. J. Phys. Oceanogr., 43, 5164, https://doi.org/10.1175/JPO-D-11-0237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. 1st ed. MIT Press, 300 pp.

    • Crossref
    • Export Citation
  • Thompson, A. F., S. T. Gille, J. A. MacKinnon, and J. Sprintall, 2007: Spatial and temporal patterns of small-scale mixing in Drake Passage. J. Phys. Oceanogr., 37, 572592, https://doi.org/10.1175/JPO3021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., T. Maksym, T. Phillips, G. J. Marshall, and M. P. Meredith, 2013: The impact of changes in sea ice advance on the large winter warming on the western Antarctic Peninsula. Int. J. Climatol., 33, 852861, https://doi.org/10.1002/joc.3474.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 641 234 82
PDF Downloads 302 52 1