Mesoscale SST Dynamics in the Kuroshio–Oyashio Extension Region

Zhao Jing Key Laboratory of Physical Oceanography/Institute for Advanced Ocean Studies, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Zhao Jing in
Current site
Google Scholar
PubMed
Close
,
Ping Chang Key Laboratory of Physical Oceanography, Ocean University of China, Ministry of Education, and Pilot National Laboratory for Marine Science and Technology, Qingdao, China, and Department of Oceanography, and Department of Atmospheric Science, Texas A&M University, College Station, Texas

Search for other papers by Ping Chang in
Current site
Google Scholar
PubMed
Close
,
Xuan Shan Key Laboratory of Physical Oceanography/Institute for Advanced Ocean Studies, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Xuan Shan in
Current site
Google Scholar
PubMed
Close
,
Shengpeng Wang Key Laboratory of Physical Oceanography/Institute for Advanced Ocean Studies, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Shengpeng Wang in
Current site
Google Scholar
PubMed
Close
,
Lixin Wu Key Laboratory of Physical Oceanography/Institute for Advanced Ocean Studies, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Lixin Wu in
Current site
Google Scholar
PubMed
Close
, and
Jaison Kurian Department of Oceanography, Texas A&M University, College Station, Texas

Search for other papers by Jaison Kurian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mesoscale eddies have been extensively studied based on the sea surface height anomaly (SSHA). However, it is the sea surface temperature anomaly (SSTA) that is vital to the mesoscale eddy–atmosphere interactions. In this study, we analyze the amplitude relationship between SSHA and SSTA (referred to as the H-T amplitude relationship) in the Kuroshio–Oyashio extension (KOE) region using both observational and reanalysis data. It is found that the spatial distribution of mesoscale SSHA variance is not coincident with mesoscale SSTA variance. The former peaks in the Kuroshio extension around 35°N whereas the latter is strongest in the Oyashio extension around 40°N. Regression analyses indicate that the rate of SSTA change per SSHA change is 1.8°C m−1 in the Kuroshio extension (145°–160°E, 34°–36°N) but increases drastically by a factor of 3–4 to 6.2°C m−1 in the Oyashio extension (145°–160°E, 39°–41°N). A theoretical expression for the H-T amplitude relationship is derived. Analyzing this expression suggests that the stronger H-T amplitude relationship in the Oyashio extension than the Kuroshio extension is mainly attributed to 1) the smaller thermal expansion coefficient due to the colder background SST, 2) the stronger salinity compensation effect that works against the contribution of SSTA change to sea surface density anomaly (SSDA) change, and 3) the shallower vertical structure of mesoscale eddies. The second factor is ascribed to the strong surface salinity front in the Oyashio extension, while the third factor is found to be qualitatively consistent with the shallower baroclinically unstable modes due to the shallower density front there.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhao Jing, jingzhao198763@sina.com

Abstract

Mesoscale eddies have been extensively studied based on the sea surface height anomaly (SSHA). However, it is the sea surface temperature anomaly (SSTA) that is vital to the mesoscale eddy–atmosphere interactions. In this study, we analyze the amplitude relationship between SSHA and SSTA (referred to as the H-T amplitude relationship) in the Kuroshio–Oyashio extension (KOE) region using both observational and reanalysis data. It is found that the spatial distribution of mesoscale SSHA variance is not coincident with mesoscale SSTA variance. The former peaks in the Kuroshio extension around 35°N whereas the latter is strongest in the Oyashio extension around 40°N. Regression analyses indicate that the rate of SSTA change per SSHA change is 1.8°C m−1 in the Kuroshio extension (145°–160°E, 34°–36°N) but increases drastically by a factor of 3–4 to 6.2°C m−1 in the Oyashio extension (145°–160°E, 39°–41°N). A theoretical expression for the H-T amplitude relationship is derived. Analyzing this expression suggests that the stronger H-T amplitude relationship in the Oyashio extension than the Kuroshio extension is mainly attributed to 1) the smaller thermal expansion coefficient due to the colder background SST, 2) the stronger salinity compensation effect that works against the contribution of SSTA change to sea surface density anomaly (SSDA) change, and 3) the shallower vertical structure of mesoscale eddies. The second factor is ascribed to the strong surface salinity front in the Oyashio extension, while the third factor is found to be qualitatively consistent with the shallower baroclinically unstable modes due to the shallower density front there.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhao Jing, jingzhao198763@sina.com
Save
  • Bishop, S. P., R. J. Small, F. O. Bryan, and R. A. Tomas, 2017: Scale dependence of midlatitude air–sea interaction. J. Climate, 30, 82078221, https://doi.org/10.1175/JCLI-D-17-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., R. Tomas, J. M. Dennis, D. B. Chelton, N. G. Loeb, and J. L. McClean, 2010: Frontal scale air–sea interaction in high-resolution coupled climate models. J. Climate, 23, 62776291, https://doi.org/10.1175/2010JCLI3665.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. D., M. Münnich, M. I. Frenger, and N. Gruber, 2016: Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean. Nat. Commun., 7, 11867, https://doi.org/10.1038/ncomms11867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23, 5269, https://doi.org/10.5670/oceanog.2010.05.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, https://doi.org/10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, Y. H., C. R. Ho, Q. N. Zheng, and N. J. Kuo, 2014: Statistical characteristics of mesoscale eddies in the North Pacific derived from satellite altimetry. Remote Sens., 6, 51645183, https://doi.org/10.3390/rs6065164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., J. C. McWilliams, Y. Liu, and D. Chen, 2014: Global heat and salt transports by eddy movement. Nat. Commun., 5, 3294, https://doi.org/10.1038/ncomms4294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, D., P. Brandt, P. Chang, F. Schutte, X. Yang, J. Yan, and J. Zeng, 2017: Mesoscale eddies in the northwestern Pacific Ocean: Three-dimensional eddy structures and heat/salt transports. J. Geophys. Res., 122, 97959813, https://doi.org/10.1002/2017JC013303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frenger, I., N. Gruber, R. Knutti, and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608612, https://doi.org/10.1038/ngeo1863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. B. Chelton, R. M. Samelson, M. G. Schlax, and L. W. O’Neill, 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104132, https://doi.org/10.1175/JPO-D-14-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausmann, U., and A. Czaja, 2012: The observed signature of mesoscale eddies in sea surface temperature and the associated heat transport. Deep-Sea Res. I, 70, 6072, https://doi.org/10.1016/j.dsr.2012.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Itoh, S., and I. Yasuda, 2010: Characteristics of mesoscale eddies in the Kuroshio–Oyashio Extension Region detected from the distribution of the sea surface height anomaly. J. Phys. Oceanogr., 40, 10181034, https://doi.org/10.1175/2009JPO4265.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwao, T., M. Endoh, N. Shikama, and T. Nakano, 2003: Intermediate circulation in the northwestern North Pacific derived from subsurface floats. J. Oceanogr., 59, 893904, https://doi.org/10.1023/B:JOCE.0000009579.86413.eb.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 33283345, https://doi.org/10.1175/1520-0485(2002)032<3328:TOEHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurian, J., F. Colas, X. Capet, J. C. Williams, and D. B. Chelton, 2011: 2011: Eddy properties in the California Current System. J. Geophys. Res., 116, C08027, https://doi.org/10.1029/2010JC006895.

    • Search Google Scholar
    • Export Citation
  • Liu, X., P. Chang, J. Kurian, R. Saravanan, and X. Lin, 2018: Satellite-observed precipitation response to ocean mesoscale eddies. J. Climate, 31, 68796895, https://doi.org/10.1175/JCLI-D-17-0668.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2015: Distant influence of Kuroshio eddies on North Pacific weather patterns? Sci. Rep., 5, 17785, https://doi.org/10.1038/srep17785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533537, https://doi.org/10.1038/nature18640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., P. Chang, R. Saravanan, R. Montuoro, H. Nakamura, D. Wu, X. Lin, and L. Wu, 2017: Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. J. Climate, 30, 18611880, https://doi.org/10.1175/JCLI-D-16-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGillicuddy, D. J., Jr., and Coauthors, 1998: Influence of mesoscale eddies on new production in the Sargasso Sea. Nature, 394, 263266, https://doi.org/10.1038/28367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putrasahan, D. A., A. J. Miller, and H. Seo, 2013: Isolating mesoscale coupled ocean–atmosphere interactions in the Kuroshio Extension region. Dyn. Atmos. Oceans, 63, 6078, https://doi.org/10.1016/j.dynatmoce.2013.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., 1999: Seasonal eddy field modulation of the North Pacific subtropical countercurrent: TOPEX/POSEIDON observations and theory. J. Phys. Oceanogr., 29, 24712486, https://doi.org/10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2004: Seasonal modulations in the eddy field of the South Pacific Ocean. J. Phys. Oceanogr., 34, 15151527, https://doi.org/10.1175/1520-0485(2004)034<1515:SMITEF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 20902103, https://doi.org/10.1175/JPO2807.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010: Interannual variability of the North Pacific subtropical countercurrent and its associated mesoscale eddy field. J. Phys. Oceanogr., 40, 213225, https://doi.org/10.1175/2009JPO4285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y. N., and S. Minobe, 2015: Climatological mean features and interannual to decadal variability of ring formations in the Kuroshio Extension region. J. Oceanogr., 71, 499509, https://doi.org/10.1007/s10872-014-0270-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J. Phys. Oceanogr., 35, 16501666, https://doi.org/10.1175/JPO2771.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siegel, D. A., D. J. McGillicuddy Jr., and E. A. Fields, 1999: Mesoscale eddies, satellite altimetry, and new production in the Sargasso Sea. J. Geophys. Res., 104, 13 35913 379, https://doi.org/10.1029/1999JC900051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr., 27, 17431769, https://doi.org/10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1998: On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr., 28, 727739, https://doi.org/10.1175/1520-0485(1998)028<0727:OECETA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, W., C. Dong, R. Wang, Y. Liu, and K. Yu, 2017: Vertical structure anomalies of oceanic eddies in the Kuroshio Extension region. J. Geophys. Res. Oceans, 122, 14761496, https://doi.org/10.1002/2016JC012226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Usui, N., and Coauthors, 2017: Four-dimensional Variational Ocean Reanalysis: A 30-year high-resolution dataset in the western North Pacific (FORA-WNP30). J. Oceanogr., 73, 205233, https://doi.org/10.1007/s10872-016-0398-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 964 pp.

    • Crossref
    • Export Citation
  • von Storch, J. S., C. Eden, I. Fast, H. Haak, D. Hernaìndez-Deckers, E. Maier-Reimer, J. Marotzke, and D. Stammer, 2012: An estimate of the Lorenz energy cycle for the World Ocean based on the 1/10° STORM/NCEP simulation. J. Phys. Oceanogr., 42, 21852205, https://doi.org/10.1175/JPO-D-12-079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., B. Qiu, P. Chang, L. Wu, S. Wang, Z. Chen, and Y. Yang, 2018: Decadal variability of eddy characteristics and energetics in the Kuroshio Extension: Unstable versus stable states. J. Geophys. Res. Oceans, 123, 66536669, https://doi.org/10.1029/2018JC014081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasuda, I., 2003: Hydrographic structure and variability in the Kuroshio–Oyashio transition area. J. Oceanogr., 59, 389402, https://doi.org/10.1023/A:1025580313836.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z., W. Wang, and B. Qiu, 2014: Oceanic mass transport by mesoscale eddies. Science, 345, 322324, https://doi.org/10.1126/science.1252418.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1261 325 88
PDF Downloads 846 172 12