Mechanisms of Eddy-Driven Variability of the Florida Current

Ricardo M. Domingues Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

Search for other papers by Ricardo M. Domingues in
Current site
Google Scholar
PubMed
Close
,
William E. Johns Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by William E. Johns in
Current site
Google Scholar
PubMed
Close
, and
Christopher S. Meinen NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Christopher S. Meinen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, mechanisms causing year-to-year changes in the Florida Current seasonality are investigated using controlled realistic numerical experiments designed to isolate the western boundary responses to westward-propagating open ocean signals. The experiments reveal two distinct processes by which westward-propagating signals can modulate the phase of the Florida Current variability, which we refer to as the “direct” and “indirect” response mechanisms. The direct response mechanism involves a two-stage response to open ocean anticyclonic eddies characterized by the direct influence of Rossby wave barotropic anomalies and baroclinic wall jets that propagate through Northwest Providence Channel. In the indirect response mechanism, open ocean signals act as small perturbations to the stochastic Gulf Stream variability downstream, which are then transmitted upstream to the Florida Straits through baroclinic coastally trapped signals that can rapidly travel along the U.S. East Coast. Experiments indicate that westward-propagating eddies play a key role in modulating the phase of the Florida Current variability, but not the amplitude, which is determined by its intrinsic variability in our simulations. Results from this study further suggest that the Antilles Current may act as a semipermeable barrier to incoming signals, favoring the interaction through the indirect response mechanism. The mechanisms reported here can be potentially linked to year-to-year changes in the seasonality of the Atlantic meridional overturning circulation and may also be present in other western boundary current systems.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-18-0192.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ricardo M. Domingues, rdomingues@rsmas.miami.edu

Abstract

In this study, mechanisms causing year-to-year changes in the Florida Current seasonality are investigated using controlled realistic numerical experiments designed to isolate the western boundary responses to westward-propagating open ocean signals. The experiments reveal two distinct processes by which westward-propagating signals can modulate the phase of the Florida Current variability, which we refer to as the “direct” and “indirect” response mechanisms. The direct response mechanism involves a two-stage response to open ocean anticyclonic eddies characterized by the direct influence of Rossby wave barotropic anomalies and baroclinic wall jets that propagate through Northwest Providence Channel. In the indirect response mechanism, open ocean signals act as small perturbations to the stochastic Gulf Stream variability downstream, which are then transmitted upstream to the Florida Straits through baroclinic coastally trapped signals that can rapidly travel along the U.S. East Coast. Experiments indicate that westward-propagating eddies play a key role in modulating the phase of the Florida Current variability, but not the amplitude, which is determined by its intrinsic variability in our simulations. Results from this study further suggest that the Antilles Current may act as a semipermeable barrier to incoming signals, favoring the interaction through the indirect response mechanism. The mechanisms reported here can be potentially linked to year-to-year changes in the seasonality of the Atlantic meridional overturning circulation and may also be present in other western boundary current systems.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-18-0192.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ricardo M. Domingues, rdomingues@rsmas.miami.edu

Supplementary Materials

    • Supplemental Materials (PDF 6.75 MB)
Save
  • Amante, C., and B. W. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 25 pp., https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf.

  • Aoki, K., A. Kubokawa, H. Sasaki, and Y. Sasai, 2009: Midlatitude baroclinic Rossby waves in a high-resolution OGCM simulation. J. Phys. Oceanogr., 39, 22642279, https://doi.org/10.1175/2009JPO4137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, C., H. Bryden, J. Hirschi, and T. Kanzow, 2010: On the seasonal cycles and variability of Florida Straits, Ekman and Sverdrup transports at 26° N in the Atlantic Ocean. Ocean Sci., 6, 837859, https://doi.org/10.5194/os-6-837-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baringer, M. O., and J. C. Larsen, 2001: Sixteen years of Florida Current transport at 27°N. Geophys. Res. Lett., 28, 31793182, https://doi.org/10.1029/2001GL013246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beal, L. M., J. M. Hummon, E. Williams, O. B. Brown, W. Baringer, and E. J. Kearns, 2008: Five years of Florida Current structure and transport from the Royal Caribbean Cruise Ship Explorer of the Seas. J. Geophys. Res. Oceans, 113, C06001, https://doi.org/10.1029/2007JC004154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and D. B. Haidvogel, 1993: Numerical simulation of flow around a tall isolated seamount. Part I: Problem formulation and model accuracy. J. Phys. Oceanogr., 23, 17361753, https://doi.org/10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boning, C. W., and R. G. Budich, 1991: Seasonal transport variation in the western subtropical North-Atlantic: Experiments with an eddy-resolving model. J. Phys. Oceanogr., 21, 12711289, https://doi.org/10.1175/1520-0485(1991)021<1271:STVITW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., W. E. Johns, and P. M. Saunders, 2005: Deep western boundary current east of Abaco: Mean structure and transport. J. Mar. Res., 63, 3557, https://doi.org/10.1357/0022240053693806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calado, L., A. Gangopadhyay, and I. Silveira, 2008: Feature-oriented regional modeling and simulations (FORMS) for the western South Atlantic: Southeastern Brazil region. Ocean Modell., 25, 4864, https://doi.org/10.1016/j.ocemod.2008.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15, 10601075, https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., and K. H. Brink, 1987: Shelf and slope circulation induced by fluctuating offshore forcing. J. Geophys. Res. Oceans, 92, 11 74111 759, https://doi.org/10.1029/JC092iC11p11741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czeschel, L., C. Eden, and R. J. Greatbatch, 2012: On the driving mechanism of the annual cycle of the Florida Current transport. J. Phys. Oceanogr., 42, 824839, https://doi.org/10.1175/JPO-D-11-0109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., and J. M. Bane Jr., 1985: Subsurface energetics of the Gulf Stream near the Charleston Bump. J. Phys. Oceanogr., 15, 17711789, https://doi.org/10.1175/1520-0485(1985)015<1771:SEOTGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., L. J. Gramer, W. E. Johns, C. S. Meinen, and M. O. Baringer, 2009: Observed interannual variability of the Florida Current: Wind forcing and the North Atlantic Oscillation. J. Phys. Oceanogr., 39, 721736, https://doi.org/10.1175/2008JPO4001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, R., M. Baringer, and G. Goni, 2016: Remote sources for year-to-year changes in the seasonality of the Florida Current transport. J. Geophys. Res. Oceans, 121, 75477559, https://doi.org/10.1002/2016JC012070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elipot, S., C. Hughes, S. Olhede, and J. Toole, 2013: Coherence of western boundary pressure at the RAPID WAVE Array: boundary wave adjustments or Deep Western Boundary Current advection? J. Phys. Oceanogr., 43, 744765, https://doi.org/10.1175/JPO-D-12-067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., 2013: Sea level rise, spatially uneven and temporally unsteady: Why the US East Coast, the global tide gauge record, and the global altimeter data show different trends. Geophys. Res. Lett., 40, 54395444, https://doi.org/10.1002/2013GL057952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., 2016: Can the Gulf Stream induce coherent short-term fluctuations in sea level along the US East Coast? A modeling study. Ocean Dyn., 66, 207220, https://doi.org/10.1007/s10236-016-0928-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., and L. P. Atkinson, 2014: Accelerated flooding along the US East Coast: On the impact of sea-level rise, tides, storms, the Gulf Stream, and the North Atlantic oscillations. Earth’s Future, 2, 362382, https://doi.org/10.1002/2014EF000252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., L. P. Atkinson, and R. Tuleya, 2017: Observations and operational model simulations reveal the impact of Hurricane Matthew (2016) on the Gulf Stream and coastal sea level. Dyn. Atmos. Oceans, 80, 124138, https://doi.org/10.1016/j.dynatmoce.2017.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flather, R., 1976: A tidal model of the northwest European continental shelf. Mem. Soc. Roy. Sci. Liege, 10 (6), 141164.

  • Frajka-Williams, E., W. Johns, C. Meinen, L. Beal, and S. Cunningham, 2013: Eddy impacts on the Florida Current. Geophys. Res. Lett., 40, 349353, https://doi.org/10.1002/grl.50115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1991: On the pressure gradient force over steep topography in sigma coordinate ocean models. J. Phys. Oceanogr., 21, 610619, https://doi.org/10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huthnance, J., 1978: On Coastal trapped waves: Analysis and numerical calculation by inverse iteration. J. Phys. Oceanogr., 8, 7492, https://doi.org/10.1175/1520-0485(1978)008<0074:OCTWAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huthnance, J., 1992: Extensive slope currents and the ocean-shelf boundary. Prog. Oceanogr., 29, 161196, https://doi.org/10.1016/0079-6611(92)90023-S.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, W. E., and D. Watts, 1986: Time scales and structure of topographic Rossby waves and meanders in the deep Gulf Stream. J. Mar. Res., 44, 267290, https://doi.org/10.1357/002224086788405356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, W. E., L. Beal, M. Baringer, J. Molina, S. Cunningham, T. Kanzow, and D. Rayner, 2008: Variability of shallow and deep western boundary currents off the Bahamas during 2004–05: Results from the 26 N RAPID-MOC array. J. Phys. Oceanogr., 38, 605623, https://doi.org/10.1175/2007JPO3791.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. W., 2001: An introduction to the bootstrap. Teach. Stat., 23, 4954, https://doi.org/10.1111/1467-9639.00050.

  • Kanzow, T., H. Johnson, D. Marshall, S. Cunningham, J.-M. Hirschi, A. Mujahid, H. Bryden, and W. Johns, 2009: Basinwide integrated volume transports in an eddy-filled ocean. J. Phys. Oceanogr., 39, 30913110, https://doi.org/10.1175/2009JPO4185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., D. B. Chelton, and R. A. de Szoeke, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 27, 19461966, https://doi.org/10.1175/1520-0485(1997)027<1946:TSOOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kourafalou, V. H., Y. S. Androulidakis, G. R. Halliwell, H. Kang, M. M. Mehari, M. Le Henaff, R. Atlas, and R. Lumpkin, 2016: North Atlantic Ocean OSSE system development: Nature Run evaluation and application to hurricane interaction with the Gulf Stream. Prog. Oceanogr., 148, 125, https://doi.org/10.1016/j.pocean.2016.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., and R. L. Molinari, 1987: Topographic modification of the Florida Current by Little Bahama and Great Bahama Banks. J. Phys. Oceanogr., 17, 17241736, https://doi.org/10.1175/1520-0485(1987)017<1724:TMOTFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., R. L. Molinari, and P. S. Vertes, 1987: Structure and variability of the Florida Current at 27°N: April 1982–July 1984. J. Phys. Oceanogr., 17, 565583, https://doi.org/10.1175/1520-0485(1987)017<0565:SAVOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., 2001: On the structure of supercritical western boundary currents. Dyn. Atmos. Oceans, 33, 303319, https://doi.org/10.1016/S0377-0265(01)00056-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., and G. Csanady, 1994: Instability waves in the Gulf Stream front and its thermocline layer. J. Mar. Res., 52, 837863, https://doi.org/10.1357/0022240943076920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. N., W. Johns, R. Zantopp, and F. Schott, 1990: Western boundary current structure and variability east of Abaco, Bahamas at 26.5°N. J. Phys. Oceanogr., 20, 446466, https://doi.org/10.1175/1520-0485(1990)020<0446:WBCSAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T. N., W. E. Johns, R. J. Zantopp, and E. R. Fillenbaum, 1996: Moored observations of western boundary current variability and thermohaline circulation at 26.5°N in the subtropical North Atlantic. J. Phys. Oceanogr., 26, 962983, https://doi.org/10.1175/1520-0485(1996)026<0962:MOOWBC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., R. J. Greatbatch, and J. Sheng, 2009: A model study of the vertically integrated transport variability through the Yucatan Channel: Role of Loop Current evolution and flow compensation around Cuba. J. Geophys. Res., 114, C08003, https://doi.org/10.1029/2008JC005199.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.

  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120, https://doi.org/10.1016/S1463-5003(00)00013-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., and D. S. Luther, 2016: Structure, transport, and vertical coherence of the Gulf Stream from the Straits of Florida to the Southeast Newfoundland Ridge. Deep-Sea Res. I, 111, 1633, https://doi.org/10.1016/j.dsr.2016.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinen, C. S., M. O. Baringer, and R. F. Garcia, 2010: Florida Current transport variability: An analysis of annual and longer-period signals. Deep-Sea Res. I, 57, 835846, https://doi.org/10.1016/j.dsr.2010.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., L. Y. Oey, and T. Ezer, 1998: Sigma coordinate pressure gradient errors and the seamount problem. J. Atmos. Oceanic Technol., 15, 11221131, https://doi.org/10.1175/1520-0426(1998)015<1122:SCPGEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mildner, T. C., C. Eden, and L. Czeschel, 2013: Revisiting the relationship between Loop Current rings and Florida Current transport variability. J. Geophys. Res. Oceans, 118, 66486657, https://doi.org/10.1002/2013JC009109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., and J. C. McWilliams, 1994: The evolution of boundary pressure in ocean basins. J. Phys. Oceanogr., 24, 13171338, https://doi.org/10.1175/1520-0485(1994)024<1317:TEOBPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mooers, C. N. K., C. S. Meinen, M. O. Baringer, I. Bang, R. Rhodes, C. N. Barron, and F. Bub, 2005: Cross validating ocean prediction and monitoring systems. Eos, Trans. Amer. Geophys. Union, 86, 269, 272273, https://doi.org/10.1029/2005EO290002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., and W. S. Richards, 1973: Seasonal variability of Florida current. J. Mar. Res., 31 (3), 144167.

  • Nof, D., 1988: Eddy-wall interactions. J. Mar. Res., 46, 527555, https://doi.org/10.1357/002224088785113540.

  • Nof, D., 1999: Strange encounters of eddies with walls. J. Mar. Res., 57, 739761, https://doi.org/10.1357/002224099321560555.

  • Oey, L. Y., T. Ezer, G. L. Mellor, and P. Chen, 1992: A model study of “bump” induced western boundary current variabilities. J. Mar. Syst., 3, 321342, https://doi.org/10.1016/0924-7963(92)90009-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., and M. Spall, 1999: Rossby normal modes in basins with barriers. J. Phys. Oceanogr., 29, 23322349, https://doi.org/10.1175/1520-0485(1999)029<2332:RNMIBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pillsbury, J. E., 1887: Gulf Stream explorations—Observations of currents. U.S. Coast and Geodetic Survey Rep., Appendix 8, 173–184.

  • Pillsbury, J. E., 1890: The Gulf Stream—A description of the methods employed in the investigation, and the results of the research. U.S. Coast and Geodetic Survey Rep., Appendix 10, 461–620.

  • Polito, P. S., and W. T. Liu, 2003: Global characterization of Rossby waves at several spectral bands. J. Geophys. Res., 108, 3018, https://doi.org/10.1029/2000JC000607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, W. S., and W. J. Schmitz Jr., 1965: A technique for the direct measurement of transport with application to the Straits of Florida. J. Mar. Res., 23, 172185.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, L. K., R. L. Molinari, and K. D. Leaman, 1989: Observed and modeled annual cycle of transport in the Straits of Florida and east of Abaco Island, the Bahamas (26.5°N). J. Geophys. Res., 94, 48674878, https://doi.org/10.1029/JC094iC04p04867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossby, T., C. Flagg, and K. Donohue, 2010: On the variability of Gulf Stream transport from seasonal to decadal timescales. J. Mar. Res., 68, 503522, https://doi.org/10.1357/002224010794657128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., 1992: Surface-intensified Rossby waves over rough topography. J. Mar. Res., 50, 367384, https://doi.org/10.1357/002224092784797593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., T. N. Lee, and R. Zantopp, 1988: Variability of structure and transport of the Florida Current in the period range of days to seasonal. J. Phys. Oceanogr., 18, 12091230, https://doi.org/10.1175/1520-0485(1988)018<1209:VOSATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., and D. Nof, 2002: The squeezing of eddies through gaps. J. Phys. Oceanogr., 32, 314335, https://doi.org/10.1175/1520-0485(2002)032<0314:TSOETG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stommel, H. M., 1958: The Gulf Stream: A Physical and Dynamical Description. University of California Press, 248 pp.

    • Crossref
    • Export Citation
  • Sturges, W., B. G. Hong, and A. J. Clarke, 1998: Decadal wind forcing of the North Atlantic subtropical gyre. J. Phys. Oceanogr., 28, 659668, https://doi.org/10.1175/1520-0485(1998)028<0659:DWFOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sweet, W. V., M. Menendez, A. Genz, J. Obeysekera, J. Park, and J. J. Marra, 2016: In tide’s way: Southeast Florida’s September 2015 sunny-day flood. Bull. Amer. Meteor. Soc., 97, S25S30, https://doi.org/10.1175/BAMS-D-16-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tailleux, R., and J. C. McWilliams, 2001: The effect of bottom pressure decoupling on the speed of extratropical, baroclinic Rossby waves. J. Phys. Oceanogr., 31, 14611476, https://doi.org/10.1175/1520-0485(2001)031<1461:TEOBPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Todd, R. E., T. G. Asher, J. Heiderich, J. M. Bane, and R. A. Luettich, 2018: Transient response of the Gulf Stream to multiple hurricanes in 2017. Geophys. Res. Lett., 45, 10 50910 519, https://doi.org/10.1029/2018GL079180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watts, D. R., and W. E. Johns, 1982: Gulf Stream meanders: Observations on propagation and growth. J. Geophys. Res., 87, 94679476, https://doi.org/10.1029/JC087iC12p09467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., D. Hansen, and B. Zetler, 1969: Fluctuations of the Florida Current inferred from sea level records. Deep-Sea Res., 16 (Suppl.), 447470.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., and W. Johns, 2014: Wind-driven seasonal cycle of the Atlantic meridional overturning circulation. J. Phys. Oceanogr., 44, 15411562, https://doi.org/10.1175/JPO-D-13-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol2.pdf.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 604 268 58
PDF Downloads 340 90 4