Mechanisms of Barrier Layer Formation and Erosion from In Situ Observations in the Bay of Bengal

Jenson V. George Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

Search for other papers by Jenson V. George in
Current site
Google Scholar
PubMed
Close
,
P. N. Vinayachandran Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

Search for other papers by P. N. Vinayachandran in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4915-5455
,
V. Vijith Cochin University of Science and Technology, Cochin, India

Search for other papers by V. Vijith in
Current site
Google Scholar
PubMed
Close
,
V. Thushara Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

Search for other papers by V. Thushara in
Current site
Google Scholar
PubMed
Close
,
Anoop A. Nayak Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

Search for other papers by Anoop A. Nayak in
Current site
Google Scholar
PubMed
Close
,
Shrikant M. Pargaonkar Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

Search for other papers by Shrikant M. Pargaonkar in
Current site
Google Scholar
PubMed
Close
,
P. Amol National Institute of Oceanography, Regional Centre, Visakhapatnam, India

Search for other papers by P. Amol in
Current site
Google Scholar
PubMed
Close
,
K. Vijaykumar National Institute of Oceanography, Goa, India

Search for other papers by K. Vijaykumar in
Current site
Google Scholar
PubMed
Close
, and
Adrian J. Matthews Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
School of Mathematics, University of East Anglia, Norwich, United Kingdom

Search for other papers by Adrian J. Matthews in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the Bay of Bengal (BoB) Boundary Layer Experiment (BoBBLE) in the southern BoB, time series of microstructure measurements were obtained at 8°N, 89°E from 4 to 14 July 2016. These observations captured events of barrier layer (BL) erosion and reformation. Initially, a three-layer structure was observed: a fresh surface mixed layer (ML) of thickness 10–20 m; a BL below of 30–40-m thickness with similar temperature but higher salinity; and a high salinity core layer, associated with the Summer Monsoon Current. Each of these three layers was in relative motion to the others, leading to regions of high shear at the interfaces. However, the destabilizing influence of the shear regions was not enough to overcome the haline stratification, and the three-layer structure was preserved. A salinity budget using in situ observations suggested that during the BL erosion, differential advection brought high salinity surface waters (34.5 psu) with weak stratification to the time series location and replaced the three-layer structure with a deep ML (~60 m). The resulting weakened stratification at the time series location then allowed atmospheric wind forcing to penetrate deeper. The turbulent kinetic energy dissipation rate and eddy diffusivity showed elevated values above 10−7 W kg−1 and 10−4 m2 s−1, respectively, in the upper 60 m. Later, the surface salinity decreased again (33.8 psu) through differential horizontal advection, stratification became stronger and elevated mixing rates were confined to the upper 20 m, and the BL reformed. A 1D model experiment suggested that in the study region, differential advection of temperature–salinity characteristics is essential for the maintenance of BL and to the extent to which mixing penetrates the water column.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: P. N. Vinayachandran, vinay@iisc.ac.in

Abstract

During the Bay of Bengal (BoB) Boundary Layer Experiment (BoBBLE) in the southern BoB, time series of microstructure measurements were obtained at 8°N, 89°E from 4 to 14 July 2016. These observations captured events of barrier layer (BL) erosion and reformation. Initially, a three-layer structure was observed: a fresh surface mixed layer (ML) of thickness 10–20 m; a BL below of 30–40-m thickness with similar temperature but higher salinity; and a high salinity core layer, associated with the Summer Monsoon Current. Each of these three layers was in relative motion to the others, leading to regions of high shear at the interfaces. However, the destabilizing influence of the shear regions was not enough to overcome the haline stratification, and the three-layer structure was preserved. A salinity budget using in situ observations suggested that during the BL erosion, differential advection brought high salinity surface waters (34.5 psu) with weak stratification to the time series location and replaced the three-layer structure with a deep ML (~60 m). The resulting weakened stratification at the time series location then allowed atmospheric wind forcing to penetrate deeper. The turbulent kinetic energy dissipation rate and eddy diffusivity showed elevated values above 10−7 W kg−1 and 10−4 m2 s−1, respectively, in the upper 60 m. Later, the surface salinity decreased again (33.8 psu) through differential horizontal advection, stratification became stronger and elevated mixing rates were confined to the upper 20 m, and the BL reformed. A 1D model experiment suggested that in the study region, differential advection of temperature–salinity characteristics is essential for the maintenance of BL and to the extent to which mixing penetrates the water column.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: P. N. Vinayachandran, vinay@iisc.ac.in
Save
  • Akhil, V., and Coauthors, 2014: A modeling study of the processes of surface salinity seasonal cycle in the Bay of Bengal. J. Geophys. Res. Oceans, 119, 39263947, https://doi.org/10.1002/2013JC009632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balaguru, K., P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li, and J.-S. Hsieh, 2012: Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA, 109, 14 34314 347, https://doi.org/10.1073/pnas.1201364109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behara, A., and P. Vinayachandran, 2016: An OGCM study of the impact of rain and river water forcing on the Bay of Bengal. J. Geophys. Res. Oceans, 121, 24252446, https://doi.org/10.1002/2015JC011325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonjean, F., and G. S. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the tropical pacific ocean. J. Phys. Oceanogr., 32, 29382954, https://doi.org/10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, A. H., B. Ward, and J. Vialard, 2014: Influence of surface forcing on near-surface and mixing layer turbulence in the tropical Indian Ocean. Deep-Sea Res. I, 94, 107123, https://doi.org/10.1016/j.dsr.2014.08.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Canuto, V. M., A. Howard, Y. Cheng, and M. Dubovikov, 2001: Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31, 14131426, https://doi.org/10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, Y., V. Canuto, and A. Howard, 2002: An improved model for the turbulent PBL. J. Atmos. Sci., 59, 15501565, https://doi.org/10.1175/1520-0469(2002)059<1550:AIMFTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., A. Parekh, S. Ojha, and C. Gnanaseelan, 2015: Role of upper ocean processes in the seasonal SST evolution over tropical Indian Ocean in climate forecasting system. Climate Dyn., 45, 23872405, https://doi.org/10.1007/s00382-015-2478-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das, U., P. Vinayachandran, and A. Behara, 2016: Formation of the southern Bay of Bengal cold pool. Climate Dyn., 47, 20092023, https://doi.org/10.1007/s00382-015-2947-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., J. Mignot, A. Lazar, and S. Cravatte, 2007: Control of salinity on the mixed layer depth in the world ocean: 1. General description. J. Geophys. Res, 112, C06011, https://doi.org/10.1029/2006JC003953.

    • Search Google Scholar
    • Export Citation
  • Drazin, P. G., and W. H. Reid, 2004: Hydrodynamic Stability. 2nd ed. Cambridge University Press, 628 pp.

    • Crossref
    • Export Citation
  • Drushka, K., W. E. Asher, B. Ward, and K. Walesby, 2016: Understanding the formation and evolution of rain-formed fresh lenses at the ocean surface. J. Geophys. Res. Oceans, 121, 26732689, https://doi.org/10.1002/2015JC011527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, F., D. Shankar, C. de Boyer Montégut, S. Shenoi, B. Blanke, and G. Madec, 2007: Modeling the barrier-layer formation in the southeastern Arabian Sea. J. Climate, 20, 21092120, https://doi.org/10.1175/JCLI4112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, https://doi.org/10.1109/JPROC.2010.2043918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. F. Bradley, J. Hare, A. Grachev, and J. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., P. Hacker, and R. Lukas, 1998: Upper ocean heat and salt balances in response to a westerly wind burst in the western equatorial Pacific during TOGA COARE. J. Geophys. Res., 103, 10 28910 311, https://doi.org/10.1029/97JC03286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Firing, E., and J. Hummon, 2010: Shipboard ADCP measurements. IOCCP Rep. 14, 11 pp., https://www.go-ship.org/Manual/Firing_SADCP.pdf.

  • Gargett, A. E., and G. Holloway, 1984: Dissipation and diffusion by internal wave breaking. J. Mar. Res., 42, 1527, https://doi.org/10.1357/002224084788506158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Girishkumar, M. S., M. Ravichandran, M. McPhaden, and R. Rao, 2011: Intraseasonal variability in barrier layer thickness in the south central Bay of Bengal. J. Geophys. Res., 116, C03009, https://doi.org/10.1029/2010JC006657.

    • Search Google Scholar
    • Export Citation
  • Girishkumar, M. S., J. Joseph, V. P. Thangaprakash, P. Vijay, and M. J. McPhaden, 2017: Mixed layer temperature budget for the northward propagating summer Monsoon Intraseasonal Oscillation (MISO) in the central Bay of Bengal. J. Geophys. Res. Oceans, 122, 88418854, https://doi.org/10.1002/2017JC013073.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregg, M., E. D’Asaro, J. Riley, and E. Kunze, 2018: Mixing efficiency in the ocean. Annu. Rev. Mar. Sci., 10, 443473, https://doi.org/10.1146/annurev-marine-121916-063643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., J. P. McCreary, and K. E. Kohler, 2001: Influence of precipitation minus evaporation and Bay of Bengal rivers on dynamics, thermodynamics, and mixed layer physics in the upper Indian Ocean. J. Geophys. Res., 106, 68956916, https://doi.org/10.1029/2000JC000403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jain, V., and Coauthors, 2017: Evidence for the existence of Persian Gulf Water and Red Sea Water in the Bay of Bengal. Climate Dyn., 48, 32073226, https://doi.org/10.1007/s00382-016-3259-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, T. G., 2003: Cross-equatorial pathways of salt and tracers from the northern Indian Ocean: Modelling results. Deep-Sea Res. II, 50, 21112127, https://doi.org/10.1016/S0967-0645(03)00048-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jerlov, N. G., 1968: Marine Optics. Elsevier Oceanography Series, Vol. 14. Elsevier, 231 pp.

  • Jinadasa, S., I. Lozovatsky, J. Planella-Morató, J. D. Nash, J. A. MacKinnon, A. J. Lucas, H. W. Wijesekera, and H. J. Fernando, 2016: Ocean turbulence and mixing around Sri Lanka and in adjacent waters of the northern Bay of Bengal. Oceanography, 29, 170179, https://doi.org/10.5670/oceanog.2016.49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, T. S., D. Chaudhuri, M. Mathur, D. L. Rudnick, D. Sengupta, H. L. Simmons, A. Tandon, and R. Venkatesan, 2016: Decay mechanisms of near-inertial mixed layer oscillations in the Bay of Bengal. Oceanography, 29, 180191, https://doi.org/10.5670/oceanog.2016.50.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000: Mixed layer depth variability and barrier layer formation over the North Pacific Ocean. J. Geophys. Res., 105, 16 78316 801, https://doi.org/10.1029/2000JC900071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsura, S., E. Oka, and K. Sato, 2015: Formation mechanism of barrier layer in the subtropical Pacific. J. Phys. Oceanogr., 45, 27902805, https://doi.org/10.1175/JPO-D-15-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I.-S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493509, https://doi.org/10.1007/s00382-012-1544-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, M. Ravichandran, W. Wang, T. Shinoda, and T. Lee, 2017: Bay of Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 1. Intraseasonal variability and causes. J. Geophys. Res. Oceans, 122, 42914311, https://doi.org/10.1002/2017JC012691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozovatsky, I., E. Roget, H. Fernando, M. Figueroa, and S. Shapovalov, 2006: Sheared turbulence in a weakly stratified upper ocean. Deep-Sea Res. I, 53, 387407, https://doi.org/10.1016/j.dsr.2005.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, A. J., and Coauthors, 2016: Adrift upon a salinity-stratified sea: a view of upper-ocean processes in the Bay of Bengal during the southwest monsoon. Oceanography, 29, 134145, https://doi.org/10.5670/oceanog.2016.46.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96, 33433357, https://doi.org/10.1029/90JC01951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and Coauthors, 2016: A tale of two spicy seas. Oceanography, 29, 5061, https://doi.org/10.5670/oceanog.2016.38.

  • Maes, C., and T. J. O’Kane, 2014: Seasonal variations of the upper ocean salinity stratification in the tropics. J. Geophys. Res. Oceans, 119, 17061722, https://doi.org/10.1002/2013JC009366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., G. S. Jaeger, M. Freilich, M. M. Omand, E. L. Shroyer, and D. Sengupta, 2016: Freshwater in the Bay of Bengal: Its fate and role in air-sea heat exchange. Oceanography, 29, 7281, https://doi.org/10.5670/oceanog.2016.40.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., and Coauthors, 2015: BoBBLE: Bay of Bengal boundary layer experiment. CLIVAR Exchanges, No. 68, International CLIVAR Project Office, Southampton, United Kingdom, 38–42.

  • Mellor, G. L., 1989: Retrospect on oceanic boundary layer modeling and second moment closure. Parameterization of Small-Scale Processes: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 251–271.

  • Mignot, J., C. de Boyer Montégut, A. Lazar, and S. Cravatte, 2007: Control of salinity on the mixed layer depth in the world ocean: 2. Tropical areas. J. Geophys. Res., 112, C10010, https://doi.org/10.1029/2006JC003954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and W. Smyth, 2001: Upper ocean mixing processes. Encyclopedia of Ocean Sciences, Vol. 6, Elsevier, 3093–3100.

    • Crossref
    • Export Citation
  • Moum, J. N., D. R. Caldwell, and C. A. Paulson, 1989: Mixing in the equatorial surface layer and thermocline. J. Geophys. Res., 94, 20052022, https://doi.org/10.1029/JC094iC02p02005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murty, V., Y. Sarma, D. Rao, and C. Murty, 1992: Water characteristics, mixing and circulation in the Bay of Bengal during southwest monsoon. J. Mar. Res., 50, 207228, https://doi.org/10.1357/002224092784797700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osborn, T., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, R., and R. Sivakumar, 2003: Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. J. Geophys. Res., 108, 3009, https://doi.org/10.1029/2001JC000907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and Coauthors, 2011: Modulation of SST, SSS over northern Bay of Bengal on ISO time scale. J. Geophys. Res., 116, C09026, https://doi.org/10.1029/2010JC006804.

    • Search Google Scholar
    • Export Citation
  • Rodi, W., 1987: Examples of calculation methods for flow and mixing in stratified fluids. J. Geophys. Res., 92, 53055328, https://doi.org/10.1029/JC092iC05p05305.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roget, E., I. Lozovatsky, X. Sanchez, and M. Figueroa, 2006: Microstructure measurements in natural waters: Methodology and applications. Prog. Oceanogr., 70, 126148, https://doi.org/10.1016/j.pocean.2006.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., and M. Ravichandran, 2001: Oscillations of Bay of Bengal sea surface temperature during the 1998 summer monsoon. Geophys. Res. Lett., 28, 20332036, https://doi.org/10.1029/2000GL012548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., G. Bharath Raj, M. Ravichandran, J. Sree Lekha, and F. Papa, 2016: Near-surface salinity and stratification in the north Bay of Bengal from moored observations. Geophys. Res. Lett., 43, 44484456, https://doi.org/10.1002/2016GL068339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shenoi, S., D. Shankar, and S. Shetye, 2002: Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon. J. Geophys. Res., 107, 3052, https://doi.org/10.1029/2000JC000679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shetye, S., S. Shenoi, A. Gouveia, G. Michael, D. Sundar, and G. Nampoothiri, 1991: Wind-driven coastal upwelling along the western boundary of the Bay of Bengal during the southwest monsoon. Cont. Shelf Res., 11, 13971408, https://doi.org/10.1016/0278-4343(91)90042-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shetye, S., A. Gouveia, D. Shankar, S. Shenoi, P. Vinayachandran, D. Sundar, G. Michael, and G. Nampoothiri, 1996: Hydrography and circulation in the western Bay of Bengal during the northeast monsoon. J. Geophys. Res., 101, 14 01114 025, https://doi.org/10.1029/95JC03307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W., P. Zavialov, and J. Moum, 1997: Decay of turbulence in the upper ocean following sudden isolation from surface forcing. J. Phys. Oceanogr., 27, 810822, https://doi.org/10.1175/1520-0485(1997)027<0810:DOTITU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and M. Tomczak, 1992: Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res., 97, 73057316, https://doi.org/10.1029/92JC00407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stips, A., H. Burchard, K. Bolding, and W. Eifler, 2002: Modelling of convective turbulence with a two-equation k-ɛ turbulence closure scheme. Ocean Dyn., 52, 153168, https://doi.org/10.1007/s10236-002-0019-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thadathil, P., P. Muraleedharan, R. Rao, Y. Somayajulu, G. Reddy, and C. Revichandran, 2007: Observed seasonal variability of barrier layer in the Bay of Bengal. J. Geophys. Res., 112, C02009, https://doi.org/10.1029/2006JC003651.

    • Search Google Scholar
    • Export Citation
  • Thadathil, P., I. Suresh, S. Gautham, S. P. Kumar, M. Lengaigne, R. R. Rao, S. Neetu, A. Hegde, 2016: Surface layer temperature inversion in the Bay of Bengal: Main characteristics and related mechanisms. J. Geophys. Res. Oceans, 121, 56825696, https://doi.org/10.1002/2016JC011674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thangaprakash, V., and Coauthors, 2016: What controls seasonal evolution of sea surface temperature in the Bay of Bengal? Mixed layer heat budget analysis using moored buoy observations along 90°E. Oceanography, 29, 202213, https://doi.org/10.5670/oceanog.2016.52.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 2007: An Introduction to Ocean Turbulence. Cambridge University Press, 264 pp.

    • Crossref
    • Export Citation
  • Ullman, D. S., and D. Hebert, 2014: Processing of underway CTD data. J. Atmos. Oceanic Technol., 31, 984998, https://doi.org/10.1175/JTECH-D-13-00200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and H. Burchard, 2005: Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Cont. Shelf Res., 25, 795827, https://doi.org/10.1016/j.csr.2004.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vidya, P. J., S. Das, M. Murali R, 2017: Contrasting Chl-a responses to the tropical cyclones Thane and Phailin in the Bay of Bengal. J. Mar. Syst., 165, 103114, https://doi.org/10.1016/j.jmarsys.2016.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P., Y. Masumoto, T. Mikawa, and T. Yamagata, 1999: Intrusion of the southwest monsoon current into the Bay of Bengal. J. Geophys. Res., 104, 11 07711 085, https://doi.org/10.1029/1999JC900035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P., V. Murty, and V. Ramesh Babu, 2002: Observations of barrier layer formation in the Bay of Bengal during summer monsoon. J. Geophys. Res., 107, 8018, https://doi.org/10.1029/2001JC000831.

    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P., D. Shankar, S. Vernekar, K. Sandeep, P. Amol, C. Neema, and A. Chatterjee, 2013: A summer monsoon pump to keep the Bay of Bengal salty. Geophys. Res. Lett., 40, 17771782, https://doi.org/10.1002/grl.50274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinayachandran, P., and Coauthors, 2018: BoBBLE: Ocean–atmosphere interaction and its impact on the South Asian monsoon. Bull. Amer. Meteor. Soc., 99, 15691587, https://doi.org/10.1175/BAMS-D-16-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webber, B. G. M., A. J. Matthews, P. N. Vinayachandran, C. P. Neema, A. Sanchez-Franks, V. Vijith, P. Amol, and D. B. Baranowski, 2018: The dynamics of the Southwest Monsoon Current in 2016 from high-resolution in situ observations and models. J. Phys. Oceanogr., 48, 22592282, https://doi.org/10.1175/JPO-D-17-0215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, E. A., and S. C. Riser, 2016: An assessment of the seasonal salinity budget for the upper Bay of Bengal. J. Phys. Oceanogr., 46, 13611376, https://doi.org/10.1175/JPO-D-15-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yan, Y., L. Li, and C. Wang, 2017: The effects of oceanic barrier layer on the upper ocean response to tropical cyclones. J. Geophys. Res. Oceans, 122, 48294844, https://doi.org/10.1002/2017JC012694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., 1995: Salinity variability and its role in the barrier-layer formation during TOGA-COARE. J. Phys. Oceanogr., 25, 27782807, https://doi.org/10.1175/1520-0485(1995)025<2778:SVAIRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3000 773 154
PDF Downloads 1960 298 33