Submesoscale Vortical Wakes in the Lee of Topography

Kaushik Srinivasan Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Kaushik Srinivasan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7191-5975
,
James C. McWilliams Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
,
M. Jeroen Molemaker Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by M. Jeroen Molemaker in
Current site
Google Scholar
PubMed
Close
, and
Roy Barkan Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Roy Barkan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An idealized framework of steady barotropic flow past an isolated seamount in a background of constant stratification (with frequency N) and rotation (with Coriolis parameter f) is used to examine the formation, separation, instability of the turbulent bottom boundary layers (BBLs), and ultimately, the genesis of submesoscale coherent vortices (SCVs) in the ocean interior. The BBLs generate vertical vorticity ζ and potential vorticity q on slopes; the flow separates and spawns shear layers; barotropic and centrifugal shear instabilities form submesoscale vortical filaments and induce a high rate of local energy dissipation; the filaments organize into vortices that then horizontally merge and vertically align to form SCVs. These SCVs have O(1) Rossby numbers () and horizontal and vertical scales that are much larger than those of the separated shear layers and associated vortical filaments. Although the upstream flow is barotropic, downstream baroclinicity manifests in the wake, depending on the value of the nondimensional height , which is the ratio of the seamount height to that of the Taylor height , where L is the seamount half-width. When , SCVs span the vertical extent of the seamount itself. However, for , there is greater range of variation in the sizes of the SCVs in the wake, reflecting the wake baroclinicity caused by the topographic interaction. The aspect ratio of the wake SCVs has the scaling , instead of the quasigeostrophic scaling .

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-18-0042.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kaushik Srinivasan, kaushiks@atmos.ucla.edu

Abstract

An idealized framework of steady barotropic flow past an isolated seamount in a background of constant stratification (with frequency N) and rotation (with Coriolis parameter f) is used to examine the formation, separation, instability of the turbulent bottom boundary layers (BBLs), and ultimately, the genesis of submesoscale coherent vortices (SCVs) in the ocean interior. The BBLs generate vertical vorticity ζ and potential vorticity q on slopes; the flow separates and spawns shear layers; barotropic and centrifugal shear instabilities form submesoscale vortical filaments and induce a high rate of local energy dissipation; the filaments organize into vortices that then horizontally merge and vertically align to form SCVs. These SCVs have O(1) Rossby numbers () and horizontal and vertical scales that are much larger than those of the separated shear layers and associated vortical filaments. Although the upstream flow is barotropic, downstream baroclinicity manifests in the wake, depending on the value of the nondimensional height , which is the ratio of the seamount height to that of the Taylor height , where L is the seamount half-width. When , SCVs span the vertical extent of the seamount itself. However, for , there is greater range of variation in the sizes of the SCVs in the wake, reflecting the wake baroclinicity caused by the topographic interaction. The aspect ratio of the wake SCVs has the scaling , instead of the quasigeostrophic scaling .

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JPO-D-18-0042.s1.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kaushik Srinivasan, kaushiks@atmos.ucla.edu

Supplementary Materials

    • Supplemental Materials (ZIP 8.55 MB)
Save
  • Abernathey, R., and P. Cessi, 2014: Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr., 44, 21072126, https://doi.org/10.1175/JPO-D-14-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aluie, H., M. Hecht, and G. K. Vallis, 2018: Mapping the energy cascade in the North Atlantic Ocean: The coarse-graining approach. J. Phys. Oceanogr., 48, 225244, https://doi.org/10.1175/JPO-D-17-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., K. L. Polzin, R. B. Scott, J. G. Richman, and J. F. Shriver, 2013: On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products. J. Phys. Oceanogr., 43, 283300, https://doi.org/10.1175/JPO-D-11-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armi, L., 1978: Some evidence for boundary mixing in the deep ocean. J. Geophys. Res., 83, 19711979, https://doi.org/10.1029/JC083iC04p01971.

  • Armi, L., and E. D’Asaro, 1980: Flow structures of the benthic ocean. J. Geophys. Res., 85, 469484, https://doi.org/10.1029/JC085iC01p00469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barkan, R., K. B. Winters, and J. C. McWilliams, 2017: Stimulated imbalance and the enhancement of eddy kinetic energy dissipation by internal waves. J. Phys. Oceanogr., 47, 181198, https://doi.org/10.1175/JPO-D-16-0117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beal, L. M., and H. L. Bryden, 1999: The velocity and vorticity structure of the Agulhas Current at 32°S. J. Geophys. Res., 104, 51515176, https://doi.org/10.1029/1998JC900056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benthuysen, J., L. N. Thomas, and S. J. Lentz, 2015: Rapid generation of upwelling at a shelf break caused by buoyancy shutdown. J. Phys. Oceanogr., 45, 294312, https://doi.org/10.1175/JPO-D-14-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and A. F. Thompson, 2014: Configuration of a southern ocean storm track. J. Phys. Oceanogr., 44, 30723078, https://doi.org/10.1175/JPO-D-14-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., and S. J. Lentz, 2010: Buoyancy arrest and bottom Ekman transport. Part I: Steady flow. J. Phys. Oceanogr., 40, 621635, https://doi.org/10.1175/2009JPO4266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carnevale, G., R. Kloosterziel, P. Orlandi, and D. Van Sommeren, 2011: Predicting the aftermath of vortex breakup in rotating flow. J. Fluid Mech., 669, 90119, https://doi.org/10.1017/S0022112010004945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., and D. B. Haidvogel, 1992: Formation of Taylor caps over a tall isolated seamount in a stratified ocean. Geophys. Astrophys. Fluid Dyn., 64, 3165, https://doi.org/10.1080/03091929208228084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csanady, G., J. Churchill, and B. Butman, 1988: Near-bottom currents over the continental slope in the mid-Atlantic bight. Cont. Shelf Res., 8, 653671, https://doi.org/10.1016/0278-4343(88)90070-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1988: Generation of submesoscale vortices: A new mechanism. J. Geophys. Res., 93, 66856693, https://doi.org/10.1029/JC093iC06p06685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewar, W., J. McWilliams, and M. Molemaker, 2015: Centrifugal instability and mixing in the California Undercurrent. J. Phys. Oceanogr., 45, 12241241, https://doi.org/10.1175/JPO-D-13-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., and J. C. McWilliams, 2007: A numerical study of island wakes in the Southern California Bight. Cont. Shelf Res., 27, 12331248, https://doi.org/10.1016/j.csr.2007.01.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, C., J. C. McWilliams, and A. F. Shchepetkin, 2007: Island wakes in deep water. J. Phys. Oceanogr., 37, 962981, https://doi.org/10.1175/JPO3047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., 2002: Vortex merger in rotating stratified flows. J. Fluid Mech., 455, 83101, https://doi.org/10.1017/S0022112001007364.

  • Epifanio, C. C., 2003: Lee vortices. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. Pyle, and J. A. Curry, Eds., Academic Press, 1150–1160, https://doi.org/10.1016/B0-12-227090-8/00241-4.

    • Crossref
    • Export Citation
  • Epifanio, C. C., and D. Durran, 2002: Lee-vortex formation in free-slip stratified flow over ridges. Part II: Mechanisms of vorticity and PV production in nonlinear viscous wakes. J. Atmos. Sci., 59, 11661181, https://doi.org/10.1175/1520-0469(2002)059<1166:LVFIFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyink, G. L., and H. Aluie, 2009: Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining. Phys. Fluids, 21, 115107, https://doi.org/10.1063/1.3266883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., P. MacCready, and P. Rhines, 1993: Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech., 25, 291323, https://doi.org/10.1146/annurev.fl.25.010193.001451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1986: The instability of barotropic circular vortices. Geophys. Astrophys. Fluid Dyn., 35, 209233, https://doi.org/10.1080/03091928608245893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. International Geophysics Series, Vol. 30, Academic Press, 662 pp.

  • Gula, J., M. Molemaker, and J. McWilliams, 2015a: Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophys. Res. Lett., 42, 40544062, https://doi.org/10.1002/2015GL063731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2015b: Gulf Stream dynamics along the southeastern U.S. seaboard. J. Phys. Oceanogr., 45, 690715, https://doi.org/10.1175/JPO-D-14-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2016: Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun., 7, 12 811, https://doi.org/10.1038/ncomms12811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassanzadeh, P., P. S. Marcus, and P. Le Gal, 2012: The universal aspect ratio of vortices in rotating stratified flows: Theory and simulation. J. Fluid Mech., 706, 4657, https://doi.org/10.1017/jfm.2012.180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., 1973a: On the stratified Taylor column. J. Fluid Mech., 58, 517537, https://doi.org/10.1017/S0022112073002302.

  • Hogg, N. G., 1973b: The preconditioning phase of MEDOC 1969—II. Topographic effects. Deep-Sea Res. Oceanogr. Abstr., 20, 449459, https://doi.org/10.1016/0011-7471(73)90099-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hristova, H. G., W. S. Kessler, J. C. McWilliams, and M. J. Molemaker, 2014: Mesoscale variability and its seasonality in the Solomon and Coral Seas. J. Geophys. Res. Oceans, 119, 46694687, https://doi.org/10.1002/2013JC009741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S., 1960: On the computation of the thickness of the wind-mixing layer in the ocean. Bull. Acad. Sci. USSR, Geophys. Ser., 3, 284287.

    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1971: Inertial-range transfer in two-and three-dimensional turbulence. J. Fluid Mech., 47, 525535, https://doi.org/10.1017/S0022112071001216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leonard, A., 1975: Energy cascade in large-eddy simulations of turbulent fluid flows. Advances in Geophysics, Vol. 18, Academic Press, 237–248, https://doi.org/10.1016/S0065-2687(08)60464-1.

    • Crossref
    • Export Citation
  • MacCready, P., and P. B. Rhines, 1993: Slippery bottom boundary layers on a slope. J. Phys. Oceanogr., 23, 522, https://doi.org/10.1175/1520-0485(1993)023<0005:SBBLOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, E., M. J. Molemaker, A. Shchepetkin, F. Colas, J. C. McWilliams, and P. Sangrà, 2010: Procedures for offline grid nesting in regional ocean models. Ocean Modell., 35, 115, https://doi.org/10.1016/j.ocemod.2010.05.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1989: Statistical properties of decaying geostrophic turbulence. J. Fluid Mech., 198, 199230, https://doi.org/10.1017/S0022112089000108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc. London, 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. B. Weiss, and I. Yavneh, 1994: Anisotropy and coherent vortex structures in planetary turbulence. Science, 264, 410413, https://doi.org/10.1126/science.264.5157.410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, and A. F. Shchepetkin, 2009: Effects in a stratified Ekman layer. J. Phys. Oceanogr., 39, 25812599, https://doi.org/10.1175/2009JPO4130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., and J. C. McWilliams, 2010: Local balance and cross-scale flux of available potential energy. J. Fluid Mech., 645, 295314, https://doi.org/10.1017/S0022112009992643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and W. K. Dewar, 2015: Submesoscale instability and generation of mesoscale anticyclones near a separation of the California Undercurrent. J. Phys. Oceanogr., 45, 613629, https://doi.org/10.1175/JPO-D-13-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., R. Ferrari, N. Grisouard, and K. Polzin, 2014: The impact of finite-amplitude bottom topography on internal wave generation in the Southern Ocean. J. Phys. Oceanogr., 44, 29382950, https://doi.org/10.1175/JPO-D-13-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110, C10028, https://doi.org/10.1029/2004JC002487.

  • Pierrehumbert, R., 1984: Local and global baroclinic instability of zonally varying flow. J. Atmos. Sci., 41, 21412162, https://doi.org/10.1175/1520-0469(1984)041<2141:LAGBIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. O. Thompson, 1972: The deepening of the wind-mixed layer. Geophys. Astrophys. Fluid Dyn., 4, 381404, https://doi.org/10.1080/03091927208236105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves. J. Atmos. Sci., 58, 23062330, https://doi.org/10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinaud, J. N., and D. G. Dritschel, 2002: The merger of vertically offset quasi-geostrophic vortices. J. Fluid Mech., 469, 287315, https://doi.org/10.1017/S0022112002001854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosso, I., A. M. Hogg, A. E. Kiss, and B. Gayen, 2015: Topographic influence on submesoscale dynamics in the Southern Ocean. Geophys. Res. Lett., 42, 11391147, https://doi.org/10.1002/2014GL062720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruan, X., and A. F. Thompson, 2016: Bottom boundary potential vorticity injection from an oscillating flow: A PV pump. J. Phys. Oceanogr., 46, 35093526, https://doi.org/10.1175/JPO-D-15-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., 2002: Mesoscale mountains and the larger-scale atmospheric dynamics: A review. Intl. Geophy., 83, 2942, https://doi.org/10.1016/S0074-6142(02)80155-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., and H. C. Davies, 1988: Quasi-geostrophic stratified flow over isolated finite amplitude topography. Dyn. Atmos. Oceans, 11, 287306, https://doi.org/10.1016/0377-0265(88)90003-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2003: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108, 3090, https://doi.org/10.1029/2001JC001047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, https://doi.org/10.1016/j.ocemod.2004.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009: Correction and commentary for “ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys., 277, pp. 3595–3624. J. Comput. Phys., 228, 89859000, https://doi.org/10.1016/j.jcp.2009.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: Some aspects of the quasi-geostrophic flow over mountains. J. Atmos. Sci., 36, 23852393, https://doi.org/10.1175/1520-0469(1979)036<2385:SAOTQG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Southwick, O., E. Johnson, and N. McDonald, 2016: A simple model for sheddies: Ocean eddies formed from shed vorticity. J. Phys. Oceanogr., 46, 29612979, https://doi.org/10.1175/JPO-D-15-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivasan, K., J. C. McWilliams, L. Renault, H. G. Hristova, J. Molemaker, and W. S. Kessler, 2017: Topographic and mixed layer submesoscale currents in the near-surface southwestern tropical Pacific. J. Phys. Oceanogr., 47, 12211242, https://doi.org/10.1175/JPO-D-16-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and S. Sarkar, 2008: Stratification effects in a bottom Ekman layer. J. Phys. Oceanogr., 38, 25352555, https://doi.org/10.1175/2008JPO3942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38.

    • Crossref
    • Export Citation
  • Thomas, L. N., J. R. Taylor, R. Ferrari, and T. M. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res. II, 91, 96110, https://doi.org/10.1016/j.dsr2.2013.02.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trowbridge, J. H., and S. J. Lentz, 2018: The bottom boundary layer. Annu. Rev. Mar. Sci., 10, 397420, https://doi.org/10.1146/annurev-marine-121916-063351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vic, C., G. Roullet, X. Capet, X. Carton, M. J. Molemaker, and J. Gula, 2015: Eddy-topography interactions and the fate of the Persian Gulf outflow. J. Geophys. Res. Oceans, 120, 67006717, https://doi.org/10.1002/2015JC011033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Von Hardenberg, J., J. McWilliams, A. Provenzale, A. Shchepetkin, and J. Weiss, 2000: Vortex merging in quasi-geostrophic flows. J. Fluid Mech., 412, 331353, https://doi.org/10.1017/S0022112000008442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and P. Bartello, 2006: The transition from geostrophic to stratified turbulence. J. Fluid Mech., 568, 89108, https://doi.org/10.1017/S0022112006002060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. J., R. B. Scott, P. Ailliot, and D. Furnival, 2014: Lee wave generation rates in the deep ocean. Geophys. Res. Lett., 41, 24342440, https://doi.org/10.1002/2013GL059087.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 963 384 50
PDF Downloads 926 302 19