• Briscoe, M. G., 1977: On current finestructure and moored current meter measurements of internal waves. Deep-Sea Res., 24, 11211131, https://doi.org/10.1016/0146-6291(77)90516-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., J. Callies, and R. Ferrari, 2014: Wave-vortex decomposition of one-dimensional ship-track data. J. Fluid Mech., 756, 10071026, https://doi.org/10.1017/jfm.2014.488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühler, O., M. Kuang, and E. G. Tabak, 2017: Anisotropic Helmholtz and wave-vortex decomposition of one-dimensional spectra. J. Fluid Mech., 815, 361387, https://doi.org/10.1017/jfm.2017.57.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cairns, J. L., and G. D. Williams, 1976: Internal wave observations from a midwater float, Part II. J. Geophys. Res., 81, 19431950, https://doi.org/10.1029/JC081i012p01943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callies, J., O. Bühler, and R. Ferrari, 2016: The dynamics of mesoscale winds in the upper troposphere and lower stratosphere. J. Atmos. Sci., 73, 48534872, https://doi.org/10.1175/JAS-D-16-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1988: Generation of submesoscale vortices: A new mechanism. J. Geophys. Res., 93, 66856693, https://doi.org/10.1029/JC093iC06p06685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fofonoff, N. P., 1969: Spectral characteristics of internal waves in the ocean. Deep-Sea Res., 16 (Suppl.), 5871.

  • Kunze, E., 1993: Submesoscale dynamics near a seamount. Part II: The partition of energy between internal waves and geostrophy. J. Phys. Oceanogr., 23, 25892601, https://doi.org/10.1175/1520-0485(1993)023<2589:SDNASP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., and T. B. Sanford, 1993: submesoscale dynamics near a seamount. Part I: Measurements of Ertel vorticity. J. Phys. Oceanogr., 23, 25672588, https://doi.org/10.1175/1520-0485(1993)023<2567:SDNASP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., and R.-C. Lien, 2019: Vortical motion. Encyclopedia of Ocean Sciences, 3rd ed. Elsevier, 702–706.

    • Crossref
    • Export Citation
  • Kunze, E., A. J. Williams III, and M. G. Briscoe, 1990: Observations of shear and vertical stability from a neutrally buoyant float. J. Geophys. Res., 95, 18 12718 142, https://doi.org/10.1029/JC095iC10p18127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leaman, K. D., and T. B. Sanford, 1975: Vertical energy propagation of inertial waves: a vector spectral analysis of velocity profiles. J. Geophys. Res., 80, 19751978, https://doi.org/10.1029/JC080i015p01975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lelong, M. P., and J. Riley, 1991: Internal wave-vortical mode interactions in strongly stratified flow. J. Fluid Mech., 232, 119, https://doi.org/10.1017/S0022112091003609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., and P. Müller, 1992a: Normal-mode decomposition of small-scale oceanic motions. J. Phys. Oceanogr., 22, 15831595, https://doi.org/10.1175/1520-0485(1992)022<1583:NMDOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., and P. Müller, 1992b: Consistency relations for gravity and vortical modes in the ocean. Deep-Sea Res., 39, 15951612, https://doi.org/10.1016/0198-0149(92)90050-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lien, R.-C., T. B. Sanford, J. A. Carlson, and J. H. Dunlap, 2016: Autonomous microstructure EM-APEX floats. Methods Oceanogr., 17, 282295, https://doi.org/10.1016/j.mio.2016.09.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E. A., 2015: Helmholtz decomposition of structure functions and spectra calculated from aircraft data. J. Fluid Mech., 762, R4, https://doi.org/10.1017/jfm.2014.685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., 1984: Small-scale vortical motions. Internal Gravity Waves and Small-Scale Turbulence: Proc. ‘Aha Huliko‘a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 249–261.

  • Müller, P., and G. Siedler, 1976: Consistency relations for internal waves. Deep-Sea Res. Oceanogr. Abstr., 23, 613628, https://doi.org/10.1016/0011-7471(76)90004-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, P., R.-C. Lien, and R. Williams, 1988: Estimates of potential vorticity at small scales in the ocean. J. Phys. Oceanogr., 18, 401416, https://doi.org/10.1175/1520-0485(1988)018<0401:EOPVAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Percival, D. B., and A. T. Walden, 1993: Spectral Analysis for Physical Application. Cambridge University Press, 683 pp.

    • Crossref
    • Export Citation
  • Pinkel, R., 2008: The wavenumber-frequency spectrum of vortical and internal-wave shear in the western Arctic Ocean. J. Phys. Oceanogr., 38, 277290, https://doi.org/10.1175/2006JPO3558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinkel, R., 2014: Vortical and internal wave shear and strain. J. Phys. Oceanogr., 44, 20702092, https://doi.org/10.1175/JPO-D-13-090.1.

  • Polzin, K., and R. Ferrari, 2004: Isopycnal dispersion in NATRE. J. Phys. Oceanogr., 34, 247257, https://doi.org/10.1175/1520-0485(2004)034<0247:IDIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polzin, K., E. Kunze, J. M. Toole, and R. W. Schmitt, 2003: The partition of finescale energy into internal waves and subinertial motions. J. Phys. Oceanogr., 33, 234248, https://doi.org/10.1175/1520-0485(2003)033<0234:TPOFEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., R. G. Drever, and J. H. Dunlap, 1978: A velocity profiler based on the principles of geomagnetic induction. Deep-Sea Res., 25, 183210, https://doi.org/10.1016/0146-6291(78)90006-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., R. G. Drever, J. H. Dunlap, and E. A. D’Asaro, 1982: Design, operation and performance of an Expendable Temperature and Velocity Profiler (XTVP). Applied Physics Laboratory Tech. Rep. APL-UW 8110, University of Washington, 164 pp., https://apps.dtic.mil/dtic/tr/fulltext/u2/a115659.pdf.

  • Sanford, T. B., R. G. Drever, and J. H. Dunlap, 1985: An acoustic Doppler and electromagnetic velocity profiler. J. Atmos. Oceanic Technol., 2, 110124, https://doi.org/10.1175/1520-0426(1985)002<0110:AADAEV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. H. Dunlap, J. A. Carlson, D. C. Webb, and J. B. Girton, 2005: Autonomous velocity and density profiler: EM-APEX. Proc. IEEE/OES Eighth Working Conference on Current Measurement Technology, Southampton, United Kingdom, IEEE, 152–156, https://doi.org/10.1109/CCM.2005.1506361.

    • Crossref
    • Export Citation
  • Shcherbina, A. Y., and Coauthors, 2015: The LatMix summer campaign: Submesoscale stirring in the upper ocean. Bull. Amer. Meteor. Soc., 96, 12571279, https://doi.org/10.1175/BAMS-D-14-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundermeyer, M. A., J. R. Ledwell, N. S. Oakey, and B. J. W. Greenan, 2005: Stirring by small-scale vortices caused by patchy mixing. J. Phys. Oceanogr., 35, 12451262, https://doi.org/10.1175/JPO2713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, G. L., and W. R. Young, 2015: Available potential vorticity and wave-averaged quasi-geostrophic flow. J. Fluid Mech., 785, 401424, https://doi.org/10.1017/jfm.2015.626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, T., J. J. Riley, S. M. de Bruyn Kops, P. J. Diamessis, and Q. Zhou, 2016: Turbulent/non-turbulent interfaces in wakes in stably stratified fluids. J. Fluid Mech., 797, R1, https://doi.org/10.1017/jfm.2016.285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., P. B. Rhines, and C. J. R. Garrett, 1982: Shear-flow, dispersion, internal waves and horizontal mixing in the ocean. J. Phys. Oceanogr., 12, 515527, https://doi.org/10.1175/1520-0485(1982)012<0515:SFDIWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 77 77 15
PDF Downloads 82 82 14

Small-Scale Potential Vorticity in the Upper-Ocean Thermocline

View More View Less
  • 1 Applied Physics Laboratory, and School of Oceanography, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

Twenty Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats in the upper-ocean thermocline of the summer Sargasso Sea observed the temporal and vertical variations of Ertel potential vorticity (PV) at 7–70-m vertical scale, averaged over O(4–8)-km horizontal scale. PV is dominated by its linear components—vertical vorticity and vortex stretching, each with an rms value of ~0.15f. In the internal wave frequency band, they are coherent and in phase, as expected for linear internal waves. Packets of strong, >0.2f, vertical vorticity and vortex stretching balance closely with a small net rms PV. The PV spectrum peaks at the highest resolvable vertical wavenumber, ~0.1 cpm. The PV frequency spectrum has a red spectral shape, a −1 spectral slope in the internal wave frequency band, and a small peak at the inertial frequency. PV measured at near-inertial frequencies is partially attributed to the non-Lagrangian nature of float measurements. Measurement errors and the vortical mode also contribute to PV in the internal wave frequency band. The vortical mode Burger number, computed using time rates of change of vertical vorticity and vortex stretching, is 0.2–0.4, implying a horizontal kinetic energy to available potential energy ratio of ~0.1. The vortical mode energy frequency spectrum is 1–2 decades less than the observed energy spectrum. Vortical mode energy is likely underestimated because its energy at vertical scales > 70 m was not measured. The vortical mode to total energy ratio increases with vertical wavenumber, implying its importance at small vertical scales.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ren-Chieh Lien, rcl@uw.edu

This article is included in the LatMix: Studies of Submesoscale Stirring and Mixing Special Collection.

Abstract

Twenty Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats in the upper-ocean thermocline of the summer Sargasso Sea observed the temporal and vertical variations of Ertel potential vorticity (PV) at 7–70-m vertical scale, averaged over O(4–8)-km horizontal scale. PV is dominated by its linear components—vertical vorticity and vortex stretching, each with an rms value of ~0.15f. In the internal wave frequency band, they are coherent and in phase, as expected for linear internal waves. Packets of strong, >0.2f, vertical vorticity and vortex stretching balance closely with a small net rms PV. The PV spectrum peaks at the highest resolvable vertical wavenumber, ~0.1 cpm. The PV frequency spectrum has a red spectral shape, a −1 spectral slope in the internal wave frequency band, and a small peak at the inertial frequency. PV measured at near-inertial frequencies is partially attributed to the non-Lagrangian nature of float measurements. Measurement errors and the vortical mode also contribute to PV in the internal wave frequency band. The vortical mode Burger number, computed using time rates of change of vertical vorticity and vortex stretching, is 0.2–0.4, implying a horizontal kinetic energy to available potential energy ratio of ~0.1. The vortical mode energy frequency spectrum is 1–2 decades less than the observed energy spectrum. Vortical mode energy is likely underestimated because its energy at vertical scales > 70 m was not measured. The vortical mode to total energy ratio increases with vertical wavenumber, implying its importance at small vertical scales.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ren-Chieh Lien, rcl@uw.edu

This article is included in the LatMix: Studies of Submesoscale Stirring and Mixing Special Collection.

Save