• Aiki, H., and R. J. Greatbatch, 2012: Thickness-weighted mean theory for the effect of surface gravity waves on mean flows in the upper ocean. J. Phys. Oceanogr., 42, 725747, https://doi.org/10.1175/JPO-D-11-095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aiki, H., and R. J. Greatbatch, 2013: The vertical structure of the surface wave radiation stress for circulation over a sloping bottom as given by thickness-weighted-mean theory. J. Phys. Oceanogr., 43, 149164, https://doi.org/10.1175/JPO-D-12-059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aiki, H., and R. J. Greatbatch, 2014: A new expression for the form stress term in the vertically Lagrangian mean framework for the effect of surface waves on the upper-ocean circulation. J. Phys. Oceanogr., 44, 323, https://doi.org/10.1175/JPO-D-12-0228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech., 89, 609646, https://doi.org/10.1017/S0022112078002773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumert, H., and G. Radach, 1992: Hysteresis of turbulent kinetic energy in nonrotational tidal flows: A model study. J. Geophys. Res. Oceans, 97, 36693677, https://doi.org/10.1029/91JC02717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becherer, J., M. T. Stacey, L. Umlauf, and H. Burchard, 2015: Lateral circulation generates flood tide stratification and estuarine exchange flow in a curved tidal inlet. J. Phys. Oceanogr., 45, 638656, https://doi.org/10.1175/JPO-D-14-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becherer, J., G. Flöser, L. Umlauf, and H. Burchard, 2016: Estuarine circulation versus tidal pumping: Sediment transport in a well-mixed tidal inlet. J. Geophys. Res. Oceans, 121, 62516270, https://doi.org/10.1002/2016JC011640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burchard, H., 1999: Recalculation of surface slopes as forcing for numerical water column models of tidal flow. Appl. Math. Modell., 23, 737755, https://doi.org/10.1016/S0307-904X(99)00008-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burchard, H., 2009: Combined effects of wind, tide, and horizontal density gradients on stratification in estuaries and coastal seas. J. Phys. Oceanogr., 39, 21172136, https://doi.org/10.1175/2009JPO4142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burchard, H., and O. Petersen, 1997: Hybridization between σ- and z-co-ordinates for improving the internal pressure gradient calculation in marine models with steep bottom slopes. Int. J. Numer. Methods Fluids, 25, 10031023, https://doi.org/10.1002/(SICI)1097-0363(19971115)25:9<1003::AID-FLD600>3.0.CO;2-E.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burchard, H., and K. Bolding, 2002: GETM—A General Estuarine Transport Model. Tech. Rep. EUR 20253 EN, JRC23237, European Commission, 157 pp., http://publications.jrc.ec.europa.eu/repository/bitstream/JRC23237/EUR%2020253%20EN.pdf.

  • Burchard, H., and R. D. Hetland, 2010: Quantifying the contributions of tidal straining and gravitational circulation to residual circulation in periodically stratified tidal estuaries. J. Phys. Oceanogr., 40, 12431262, https://doi.org/10.1175/2010JPO4270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burchard, H., H. M. Schuttelaars, and W. R. Geyer, 2013: Residual sediment fluxes in weakly-to-periodically stratified estuaries and tidal inlets. J. Phys. Oceanogr., 43, 18411861, https://doi.org/10.1175/JPO-D-12-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burchard, H., and Coauthors, 2018: The Knudsen theorem and the Total Exchange Flow analysis framework applied to the Baltic Sea. Prog. Oceanogr., 165, 268286, https://doi.org/10.1016/j.pocean.2018.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burchard, H., X. Lange, K. Klingbeil, and P. MacCready, 2019: Mixing estimates for estuaries. J. Phys. Oceanogr., 49, 631648, https://doi.org/10.1175/JPO-D-18-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, P., H. E. de Swart, and A. Valle-Levinson, 2013: Role of asymmetric tidal mixing in the subtidal dynamics of narrow estuaries. J. Geophys. Res. Oceans, 118, 26232639, https://doi.org/10.1002/jgrc.20189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. A., and A. F. Bennet, 1993: Microstructure fluxes across density surfaces. J. Phys. Oceanogr., 23, 22542264, https://doi.org/10.1175/1520-0485(1993)023<2254:MFADS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dronkers, J., and J. van de Kreeke, 1986: Experimental determination of salt intrusion mechanisms in the Volkerak estuary. Neth. J. Sea Res., 20, 119, https://doi.org/10.1016/0077-7579(86)90056-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giddings, S. N., S. G. Monismith, D. A. Fong, and M. T. Stacey, 2014: Using depth-normalized coordinates to examine mass transport residual circulation in estuaries with large tidal amplitude relative to the mean depth. J. Phys. Oceanogr., 44, 128148, https://doi.org/10.1175/JPO-D-12-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and T. J. McDougall, 2003: The non-Boussinesq temporal residual mean. J. Phys. Oceanogr., 33, 12311239, https://doi.org/10.1175/1520-0485(2003)033<1231:TNTRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, D. V., and M. Rattray Jr., 1965: Gravitational circulation in straits and estuaries. J. Mar. Res., 23, 104122.

  • Hofmeister, R., H. Burchard, and J.-M. Beckers, 2010: Non-uniform adaptive vertical grids for 3D numerical ocean models. Ocean Modell., 33, 7086, https://doi.org/10.1016/j.ocemod.2009.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1974: Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev., 102, 509522, https://doi.org/10.1175/1520-0493(1974)102<0509:VVCSUF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kjerfve, B., 1975: Velocity averaging in estuaries characterized by a large tidal range to depth ratio. Estuarine Coastal Mar. Sci., 3, 311323, https://doi.org/10.1016/0302-3524(75)90031-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klingbeil, K., and H. Burchard, 2013: Implementation of a direct nonhydrostatic pressure gradient discretisation into a layered ocean model. Ocean Modell., 65, 6477, https://doi.org/10.1016/j.ocemod.2013.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klingbeil, K., F. Lemarié, L. Debreu, and H. Burchard, 2018: The numerics of hydrostatic structured-grid coastal ocean models: State of the art and future perspectives. Ocean Modell., 125, 80105, https://doi.org/10.1016/j.ocemod.2018.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., W. R. Geyer, and R. J. Chant, 2006: Mechanisms driving the time-dependent salt flux in a partially stratified estuary. J. Phys. Oceanogr., 36, 22962311, https://doi.org/10.1175/JPO2959.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1969: On the transport of mass by time-varying ocean currents. Deep-Sea Res. Oceanogr. Abstr., 16, 431447, https://doi.org/10.1016/0011-7471(69)90031-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacCready, P., 2011: Calculating estuarine exchange flow using isohaline coordinates. J. Phys. Oceanogr., 41, 11161124, https://doi.org/10.1175/2011JPO4517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31, 12221246, https://doi.org/10.1175/1520-0485(2001)031<1222:TTRMVP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., J. Brown, J. Matthews, and G. Allen, 1990: Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries, 13, 125132, https://doi.org/10.2307/1351581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stacey, M. T., J. P. Fram, and F. K. Chow, 2008: Role of tidally periodic density stratification in the creation of estuarine subtidal circulation. J. Geophys. Res. Oceans, 113, C08016, https://doi.org/10.1029/2007JC004581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walin, G., 1977: A theoretical framework for the description of estuaries. Tellus, 29, 128136, https://doi.org/10.3402/tellusa.v29i2.11337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. C., C. R. Sherwood, H. G. Arango, and R. P. Signell, 2005: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell., 8, 81113, https://doi.org/10.1016/j.ocemod.2003.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., 2014: Approximations to the ocean’s residual circulation in arbitrary tracer coordinates. Ocean Modell., 75, 2035, https://doi.org/10.1016/j.ocemod.2013.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, https://doi.org/10.1175/JPO-D-11-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zimmerman, J. T. F., 1979: On the Euler–Lagrange transformation and the Stokes’ drift in the presence of oscillatory and residual currents. Deep-Sea Res., 26A, 505520, https://doi.org/10.1016/0198-0149(79)90093-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 93 93 15
PDF Downloads 89 89 18

Thickness-Weighted Averaging in Tidal Estuaries and the Vertical Distribution of the Eulerian Residual Transport

View More View Less
  • 1 Department of Mathematics, University of Hamburg, Hamburg, Germany
  • 2 Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
  • 3 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • 4 Department of Physics, Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
  • 5 Delft Institute of Applied Mathematics, Delft University of Technology, Delft, Netherlands
  • 6 Department of Civil and Coastal Engineering, University of Florida, Gainesville, Florida
© Get Permissions
Restricted access

Abstract

This paper presents thickness-weighted averaging (TWA) in generalized vertical coordinates as a unified framework for a variety of existing tidal-averaging concepts in seas and estuaries. Vertical profiles of resulting residual quantities depend on the specific vertical coordinate, which is held fixed during the averaging process. This dependence is demonstrated through the application to one-dimensional analytical tidal flow with sediment transport, to field observations from a tidal channel, and to model results from a two-dimensional estuary. The use of different coordinate systems provides complementary views on the residual dynamics and stresses the importance of a correct interpretation of residual quantities obtained by tidal averaging.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Knut Klingbeil, knut.klingbeil@io-warnemuende.de

Abstract

This paper presents thickness-weighted averaging (TWA) in generalized vertical coordinates as a unified framework for a variety of existing tidal-averaging concepts in seas and estuaries. Vertical profiles of resulting residual quantities depend on the specific vertical coordinate, which is held fixed during the averaging process. This dependence is demonstrated through the application to one-dimensional analytical tidal flow with sediment transport, to field observations from a tidal channel, and to model results from a two-dimensional estuary. The use of different coordinate systems provides complementary views on the residual dynamics and stresses the importance of a correct interpretation of residual quantities obtained by tidal averaging.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Knut Klingbeil, knut.klingbeil@io-warnemuende.de
Save