• Baines, P. G., 1995: Topographic Effects in Stratified Flows. Cambridge University Press, 500 pp.

  • Bell, T. H., 1975a: Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67, 705722, https://doi.org/10.1017/S0022112075000560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T. H., 1975b: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327, https://doi.org/10.1029/JC080i003p00320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chereskin, T. K., K. A. Donohue, D. R. Watts, K. L. Tracey, Y. L. Firing, and A. L. Cutting, 2009: Strong bottom currents and cyclogenesis in Drake Passage. Geophys. Res. Lett., 36, L23602, https://doi.org/10.1029/2009GL040940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., S. G. Alderson, B. A. King, and M. A. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res., 108, 8084, https://doi.org/10.1029/2001JC001147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Lavergne, C., G. Madec, J. L. Sommer, A. J. G. Nurser, and A. C. Naveira Garbato, 2016: The impact of a variable mixing efficiency on the abyssal overturning. J. Phys. Oceanogr., 46, 663681, https://doi.org/10.1175/JPO-D-14-0259.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dossmann, Y., M. G. Rosevear, R. W. Griffiths, A. M. Hogg, G. O. Hughes, and M. Copeland, 2016: Experiments with mixing in stratified flow over a topographic ridge. J. Geophys. Res. Oceans, 121, 69616977, https://doi.org/10.1002/2016JC011990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayen, B., G. O. Hughes, and R. W. Griffiths, 2013: Completing the mechanical energy pathways in turbulent Rayleigh-Benard convection. Phys. Rev. Lett., 111, 124301, https://doi.org/10.1103/PhysRevLett.111.124301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, J. A., and T. H. Jordan, 1988: Stochastic modeling of seafloor morphology: Inversion of sea beam data for second-order statistics. J. Geophys. Res., 93, 13 58913 608, https://doi.org/10.1029/JB093iB11p13589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, J. A., Y. Ma, A. Shah, J. R. Cochran, and J. C. Sempere, 1997: Stochastic analysis of seafloor morphology on the flank of the Southeast Indian Ridge: The influence of ridge morphology on the formation of abyssal hills. J. Geophys. Res., 102, 15 52115 534, https://doi.org/10.1029/97JB00781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J., 2018: Nonpropagating form drag and turbulence due to stratified flow over large-scale abyssal hill topography. J. Phys. Oceanogr., 48, 23832395, https://doi.org/10.1175/JPO-D-17-0225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, https://doi.org/10.1175/JPO2926.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Legg, S., and J. Klymak, 2008: Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J. Phys. Oceanogr., 38, 19491964, https://doi.org/10.1175/2008JPO3777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and M. Nikurashin, 2014: Sensitivity of the ocean state to lee wave-driven mixing. J. Phys. Oceanogr., 44, 900921, https://doi.org/10.1175/JPO-D-13-072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, A. Adcroft, M. Nikurashin, and S. Legg, 2015: Energy flux into internal lee waves: Sensitivity to future climate changes using linear theory and a climate model. J. Climate, 28, 23652384, https://doi.org/10.1175/JCLI-D-14-00432.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, A., K. L. Polzin, B. M. Sloyan, and H. E. Phillips, 2016: Internal waves and mixing near the Kerguelen Plateau. J. Phys. Oceanogr., 46, 417437, https://doi.org/10.1175/JPO-D-15-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, https://doi.org/10.1126/science.1090929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010a: Radiation and dissipation of internal waves generated by geostrophic flows impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40, 10551074, https://doi.org/10.1175/2009JPO4199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010b: Radiation and dissipation of internal waves generated by geostrophic flows impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40, 20252042, https://doi.org/10.1175/2010JPO4315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, https://doi.org/10.1029/2011GL046576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2013: Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett., 40, 31333137, https://doi.org/10.1002/grl.50542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., R. Ferrari, N. Grisouard, and K. Polzin, 2014: The impact of finite-amplitude bottom topography on internal wave generation in the Southern Ocean. J. Phys. Oceanogr., 44, 2938–2950, https://doi.org/10.1175/JPO-D-13-0201.1.

    • Crossref
    • Export Citation
  • Richet, O., C. Muller, and J. M. Chomaz, 2017: Impact of a mean current on the internal tide energy dissipation at the critical latitude. J. Phys. Oceanogr., 47, 14571471, https://doi.org/10.1175/JPO-D-16-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roquet, F., C. Wunsch, and G. Madee, 2011: On the patterns of wind-power input to the ocean circulation. J. Phys. Oceanogr., 41, 23282342, https://doi.org/10.1175/JPO-D-11-024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. B., J. A. Goff, A. C. Naveira Garabato, and A. J. G. Nurser, 2011: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res., 116, C09029, https://doi.org/10.1029/2011JC007005.

    • Search Google Scholar
    • Export Citation
  • Shakespeare, C. J., and A. M. Hogg, 2017: The viscous lee wave problem and its implications for ocean modelling. Ocean Modell., 113, 2229, https://doi.org/10.1016/j.ocemod.2017.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheen, K. L., and Coauthors, 2013: Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). J. Geophys. Res. Oceans, 118, 27742792, https://doi.org/10.1002/jgrc.20217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., A. C. Naveira Garabato, J. Ledwell, A. M. Thurnherr, J. M. Toole, and A. J. Watson, 2012: Turbulence and diapycnal mixing in Drake Passage. J. Phys. Oceanogr., 42, 21432152, https://doi.org/10.1175/JPO-D-12-027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trossman, D. S., S. Waterman, K. L. Polzin, B. K. Arbic, S. T. Garner, A. C. Naveira Garabato, and K. L. Sheen, 2015: Internal lee wave closures: Parameter sensitivity and comparison to observations. J. Geophys. Res. Oceans, 120, 79978019, https://doi.org/10.1002/2015JC010892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., A. Naveira Garabato, and K. Polzin, 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259282, https://doi.org/10.1175/JPO-D-11-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterman, S., K. Polzin, A. Naveira Garabato, K. Shen, and A. Forryan, 2014: Suppression of internal wave breaking in the Antarctic Circumpolar Current near topography. J. Phys. Oceanogr., 44, 14661492, https://doi.org/10.1175/JPO-D-12-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. J., R. B. Scott, P. Ailliot, and D. Furnival, 2014: Lee wave generation rates in the deep ocean. Geophys. Res. Lett., 41, 24342440, https://doi.org/10.1002/2013GL059087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, L., M. Nikurashin, A. M. Hogg, and B. Sloyan, 2018: Energy loss from transient eddies due to lee wave generation in the Southern Ocean. J. Phys. Oceanogr., 48, 2867–2885, https://doi.org/10.1175/JPO-D-18-0077.1.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 87 87 10
PDF Downloads 72 72 12

Downstream Propagation and Remote Dissipation of Internal Waves in the Southern Ocean

View More View Less
  • 1 Physical Oceanography Laboratory/Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China, and Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
  • 2 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, and Centre of Excellence for Climate Extremes, Sydney, New South Wales, Australia
© Get Permissions
Restricted access

Abstract

Recent microstructure observations in the Southern Ocean report enhanced internal gravity waves and turbulence in the frontal regions of the Antarctic Circumpolar Current extending a kilometer above rough bottom topography. Idealized numerical simulations and linear theory show that geostrophic flows impinging on rough small-scale topography are very effective generators of internal waves and estimate vigorous wave radiation, breaking, and turbulence within a kilometer above bottom. However, both idealized simulations and linear theory assume periodic and spatially uniform topography and tend to overestimate the observed levels of turbulent energy dissipation locally at the generation sites. In this study, we explore the downstream evolution and remote dissipation of internal waves generated by geostrophic flows using a series of numerical, realistic topography simulations and parameters typical of Drake Passage. The results show that significant levels of internal wave kinetic energy and energy dissipation are present downstream of the rough topography, internal wave generation site. About 30%–40% of the energy dissipation occurs locally over the rough topography region, where internal waves are generated. The rest of the energy dissipation takes place remotely and decays downstream of the generation site with an e-folding length scale of up to 20–30 km. The model we use is two-dimensional with enhanced viscosity coefficients, and hence it can result in the underestimation of the remote wave dissipation and its decay length scale. The implications of our results for turbulent energy dissipation observations and mixing parameterizations are discussed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kaiwen Zheng, keviniskg@sina.com

Abstract

Recent microstructure observations in the Southern Ocean report enhanced internal gravity waves and turbulence in the frontal regions of the Antarctic Circumpolar Current extending a kilometer above rough bottom topography. Idealized numerical simulations and linear theory show that geostrophic flows impinging on rough small-scale topography are very effective generators of internal waves and estimate vigorous wave radiation, breaking, and turbulence within a kilometer above bottom. However, both idealized simulations and linear theory assume periodic and spatially uniform topography and tend to overestimate the observed levels of turbulent energy dissipation locally at the generation sites. In this study, we explore the downstream evolution and remote dissipation of internal waves generated by geostrophic flows using a series of numerical, realistic topography simulations and parameters typical of Drake Passage. The results show that significant levels of internal wave kinetic energy and energy dissipation are present downstream of the rough topography, internal wave generation site. About 30%–40% of the energy dissipation occurs locally over the rough topography region, where internal waves are generated. The rest of the energy dissipation takes place remotely and decays downstream of the generation site with an e-folding length scale of up to 20–30 km. The model we use is two-dimensional with enhanced viscosity coefficients, and hence it can result in the underestimation of the remote wave dissipation and its decay length scale. The implications of our results for turbulent energy dissipation observations and mixing parameterizations are discussed.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kaiwen Zheng, keviniskg@sina.com
Save