• Alford, M. H., and Coauthors, 2015: The formation and fate of internal waves in the South China Sea. Nature, 521, 6569, https://doi.org/10.1038/nature14399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourgault, D., M. D. Blokhina, R. Mirshak, and D. E. Kelley, 2007: Evolution of a shoaling internal solitary wavetrain. Geophys. Res. Lett., 34, L03601, https://doi.org/10.1029/2006GL028462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-N., and L. P. Sanford, 2009: Lateral circulation driven by boundary mixing and the associated transport of sediments in idealized partially mixed estuaries. Cont. Shelf Res., 29, 101118, https://doi.org/10.1016/j.csr.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, P., M. Li, and Y. Li, 2013: Generation of an estuarine sediment plume by a tropical storm. J. Geophys. Res. Oceans, 118, 856868, https://doi.org/10.1002/jgrc.20070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, P. F., S. Vagle, L. Armi, and D. M. Farmer, 2003: Stratified flow over topography: Upstream influence and generation of nonlinear internal waves. Proc. Roy. Soc. London, 459A, 14671487, https://doi.org/10.1098/rspa.2002.1077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571–591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Export Citation
  • Farmer, D. M., and J. D. Smith, 1980: Tidal interaction of stratified flow with a sill in Knight Inlet. Deep-Sea Res., 27A, 239246, https://doi.org/10.1016/0198-0149(80)90015-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., and L. Armi, 1999: The generation and trapping of solitary waves over topography. Science, 283, 188190, https://doi.org/10.1126/science.283.5399.188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, A. W., L. P. Sanford, and S. E. Suttles, 2015: Wind stress dynamics in Chesapeake Bay: Spatiotemporal variability and wave dependence in a fetch-limited environment. J. Phys. Oceanogr., 45, 26792696, https://doi.org/10.1175/JPO-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerkema, T., and J. T. F. Zimmerman, 1995: Generation of nonlinear internal tide and solitary waves. J. Phys. Oceanogr., 25, 10811094, https://doi.org/10.1175/1520-0485(1995)025<1081:GONITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., and P. MacCready, 2014: The estuarine circulation. Annu. Rev. Fluid Mech., 46, 175197, https://doi.org/10.1146/annurev-fluid-010313-141302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gregg, M., and L. Pratt, 2010: Flow and hydraulics near the sill of Hood Canal, a strongly sheared, continuously stratified fjord. J. Phys. Oceanogr., 40, 10871105, https://doi.org/10.1175/2010JPO4312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groeskamp, S., J. Nauw, and L. Maas, 2011: Observations of estuarine circulation and solitary internal waves in a highly energetic tidal channel. Ocean Dyn., 61, 17671782, https://doi.org/10.1007/s10236-011-0455-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, P. E., 1987: Internal hydraulic jumps and solitons at a shelf break region on the Australian North West Shelf. J. Geophys. Res., 92, 54055416, https://doi.org/10.1029/JC092iC05p05405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huijts, K. M. H., H. M. Schuttelaars, H. E. de Swart, and C. T. Friedrichs, 2009: Analytical study of the transverse distribution of along-channel and transverse residual flows in tidal estuaries. Cont. Shelf Res., 29, 89100, https://doi.org/10.1016/j.csr.2007.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., N. L. Jones, J. D. Nash, and A. F. Waterhouse, 2013: The geography of semidiurnal mode-1 internal-tide energy loss. Geophys. Res. Lett., 40, 46894693, https://doi.org/10.1002/grl.50872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. H. Alford, R. Pinkel, R.-C. Lien, Y. J. Yang, and T.-Y. Tang, 2011: The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr., 41, 926945, https://doi.org/10.1175/2010JPO4500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, K., 1994: Numerical experiments of internal wave generation by strong tidal flow across a finite-amplitude bank edge. J. Geophys. Res., 99, 843864, https://doi.org/10.1029/93JC02514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., and W. R. Geyer, 2004: Modeling the lateral circulation in straight, stratified estuaries. J. Phys. Oceanogr., 34, 14101428, https://doi.org/10.1175/1520-0485(2004)034<1410:MTLCIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., 1982: Climatological atlas of the world ocean. NOAA Professional Paper 13, 173 pp.

  • Li, M., P. Cheng, R. Chant, A. Valle-Levinson, and K. Arnott, 2014: Analysis of vortex dynamics of lateral circulation in a straight tidal estuary. J. Phys. Oceanogr., 44, 27792795, https://doi.org/10.1175/JPO-D-13-0212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, M., W. Liu, R. Chant, and A. Valle-Levinson, 2017: Flood-ebb and spring-neap variations of lateral circulation in the James River estuary. Cont. Shelf Res., 148, 918, https://doi.org/10.1016/j.csr.2017.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., M. Li, and W. M. Kemp, 2015: A budget analysis of bottom-water dissolved oxygen in Chesapeake Bay. Estuaries Coasts, 38, 21322148, https://doi.org/10.1007/s12237-014-9928-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxworthy, T., 1979: A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. J. Geophys. Res., 84, 338346, https://doi.org/10.1029/JC084iC01p00338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes. II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, https://doi.org/10.1016/S0967-0637(98)00070-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J. D., M. H. Alford, and E. Kunze, 2005: Estimating internal wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22, 15511570, https://doi.org/10.1175/JTECH1784.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nunes, R., and J. Simpson, 1985: Axial convergence in a well-mixed estuary. Estuar. Coast. Shelf Sci., 20, 637649, https://doi.org/10.1016/0272-7714(85)90112-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, H., 1999: Spatial and temporal variability of turbulent mixing in an estuary. J. Mar. Res., 57, 805845, https://doi.org/10.1357/002224099321514060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, C., D. Bourgault, P. S. Galbraith, A. Hay, and D. E. Kelley, 2013: Measurements of shoaling internal waves and turbulence in an estuary. J. Geophys. Res., 118, 273286, https://doi.org/10.1029/2012JC008154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarabun C. C., and D. C. Dubbel, 1990: High-resolution thermistor chain observations in the upper Chesapeake Bay. Johns Hopkins APL Tech. Dig., 11, 48–53.

  • Scotti, A., R. C. Beardsley, and B. Butman, 2007: Generation and propagation of nonlinear internal waves in Massachusetts Bay. J. Geophys. Res., 112, C10001, https://doi.org/10.1029/2007JC004313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scully, M. E., W. R. Geyer, and J. A. Lerczak, 2009: The influence of lateral advection on the residual estuarine circulation: A numerical modeling study of the Hudson River estuary. J. Phys. Oceanogr., 39, 107124, https://doi.org/10.1175/2008JPO3952.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seim, H. E., and M. C. Gregg, 1997: The importance of aspiration and channel curvature in producing strong vertical mixing over a sill. J. Geophys. Res., 102, 34513472, https://doi.org/10.1029/96JC03415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., 2006: Tidally generated internal waves in partially mixed estuaries. Cont. Shelf Res., 26, 14691480, https://doi.org/10.1016/j.csr.2006.02.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., and M. Li, 2018: Effects of wind straining on estuarine stratification: A combined observational and modeling study. J. Geophys. Res., 123, 23632380, https://doi.org/10.1002/2017JC013470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., Y. Cuypers, P. Bouruet-Aubertot, A. Pichon, A. Lourenço, and B. Ferron, 2015: Generation and propagation of internal tides and solitary waves at the shelf edge of the Bay of Biscay. J. Geophys. Res., 120, 66036621, https://doi.org/10.1002/2015JC010827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., M. Li, M. E. Scully, and W. C. Boicourt, 2017a: Generation of internal solitary waves by lateral circulation in a stratified estuary. J. Phys. Oceangr., 47, 1789–1797, https://doi.org/10.1175/JPO-D-16-0240.1.

    • Crossref
    • Export Citation
  • Xie, X., M. Li, and W. C. Boicourt, 2017b: Breaking of internal solitary waves generated by an estuarine gravity current. Geophys. Res. Lett., 44, 73667373, https://doi.org/10.1002/2017GL073824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., M. Li, and W. C. Boicourt, 2017c: Baroclinic effects on wind-driven lateral circulation in Chesapeake Bay. J. Phys. Oceanogr., 47, 433445, https://doi.org/10.1175/JPO-D-15-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 69 69 22
PDF Downloads 70 70 23

Generation of Internal Lee Waves by Lateral Circulation in a Coastal Plain Estuary

View More View Less
  • 1 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China, and Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland
  • 2 Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland
© Get Permissions
Restricted access

Abstract

Recent mooring observations at a cross-channel section in Chesapeake Bay showed that internal solitary waves regularly appeared during certain phases of a tidal cycle and propagated from the deep channel to the shallow shoal. It was hypothesized that these waves resulted from the nonlinear steepening of internal lee waves generated by lateral currents over channel-shoal topography. In this study numerical modeling is conducted to investigate the interaction between lateral circulation and cross-channel topography and discern the generation mechanism of the internal lee waves. During ebb tides, lateral bottom Ekman forcing drives a counterclockwise (looking into estuary) lateral circulation, with strong currents advecting stratified water over the western flank of the deep channel and producing large isopycnal displacements. When the lateral flow becomes supercritical with respect to mode-2 internal waves, a mode-2 internal lee wave is generated on the flank of the deep channel and subsequently propagates onto the western shoal. When the bottom lateral flow becomes near-critical or supercritical with respect to mode-1 internal waves, the lee wave evolves into an internal hydraulic jump. On the shallow shoal, the lee waves or jumps evolve into internal bores of elevation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaohui Xie, xhxie2013@gmail.com

Abstract

Recent mooring observations at a cross-channel section in Chesapeake Bay showed that internal solitary waves regularly appeared during certain phases of a tidal cycle and propagated from the deep channel to the shallow shoal. It was hypothesized that these waves resulted from the nonlinear steepening of internal lee waves generated by lateral currents over channel-shoal topography. In this study numerical modeling is conducted to investigate the interaction between lateral circulation and cross-channel topography and discern the generation mechanism of the internal lee waves. During ebb tides, lateral bottom Ekman forcing drives a counterclockwise (looking into estuary) lateral circulation, with strong currents advecting stratified water over the western flank of the deep channel and producing large isopycnal displacements. When the lateral flow becomes supercritical with respect to mode-2 internal waves, a mode-2 internal lee wave is generated on the flank of the deep channel and subsequently propagates onto the western shoal. When the bottom lateral flow becomes near-critical or supercritical with respect to mode-1 internal waves, the lee wave evolves into an internal hydraulic jump. On the shallow shoal, the lee waves or jumps evolve into internal bores of elevation.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaohui Xie, xhxie2013@gmail.com
Save