Observations of Diurnal Coastal-Trapped Waves with a Thermocline-Intensified Velocity Field

Tamara L. Schlosser Oceans Graduate School and the Ocean Institute, University of Western Australia, Crawley, Western Australia, Australia

Search for other papers by Tamara L. Schlosser in
Current site
Google Scholar
PubMed
Close
,
Nicole L. Jones Oceans Graduate School and the Ocean Institute, University of Western Australia, Crawley, Western Australia, Australia

Search for other papers by Nicole L. Jones in
Current site
Google Scholar
PubMed
Close
,
Ruth C. Musgrave Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Ruth C. Musgrave in
Current site
Google Scholar
PubMed
Close
,
Cynthia E. Bluteau Institut des Sciences de la Mer, Universite du Quebec a Rimouski, Rimouski, Quebec, Canada

Search for other papers by Cynthia E. Bluteau in
Current site
Google Scholar
PubMed
Close
,
Gregory N. Ivey Oceans Graduate School and the Ocean Institute, University of Western Australia, Crawley, Western Australia, Australia

Search for other papers by Gregory N. Ivey in
Current site
Google Scholar
PubMed
Close
, and
Andrew J. Lucas Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Andrew J. Lucas in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using 18 days of field observations, we investigate the diurnal (D1) frequency wave dynamics on the Tasmanian eastern continental shelf. At this latitude, the D1 frequency is subinertial and separable from the highly energetic near-inertial motion. We use a linear coastal-trapped wave (CTW) solution with the observed background current, stratification, and shelf bathymetry to determine the modal structure of the first three resonant CTWs. We associate the observed D1 velocity with a superimposed mode-zero and mode-one CTW, with mode one dominating mode zero. Both the observed and mode-one D1 velocity was intensified near the thermocline, with stronger velocities occurring when the thermocline stratification was stronger and/or the thermocline was deeper (up to the shelfbreak depth). The CTW modal structure and amplitude varied with the background stratification and alongshore current, with no spring–neap relationship evident for the observed 18 days. Within the surface and bottom Ekman layers on the shelf, the observed velocity phase changed in the cross-shelf and/or vertical directions, inconsistent with an alongshore propagating CTW. In the near-surface and near-bottom regions, the linear CTW solution also did not match the observed velocity, particularly within the bottom Ekman layer. Boundary layer processes were likely causing this observed inconsistency with linear CTW theory. As linear CTW solutions have an idealized representation of boundary dynamics, they should be cautiously applied on the shelf.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tamara Schlosser, tamara.schlosser@research.uwa.edu.au

Abstract

Using 18 days of field observations, we investigate the diurnal (D1) frequency wave dynamics on the Tasmanian eastern continental shelf. At this latitude, the D1 frequency is subinertial and separable from the highly energetic near-inertial motion. We use a linear coastal-trapped wave (CTW) solution with the observed background current, stratification, and shelf bathymetry to determine the modal structure of the first three resonant CTWs. We associate the observed D1 velocity with a superimposed mode-zero and mode-one CTW, with mode one dominating mode zero. Both the observed and mode-one D1 velocity was intensified near the thermocline, with stronger velocities occurring when the thermocline stratification was stronger and/or the thermocline was deeper (up to the shelfbreak depth). The CTW modal structure and amplitude varied with the background stratification and alongshore current, with no spring–neap relationship evident for the observed 18 days. Within the surface and bottom Ekman layers on the shelf, the observed velocity phase changed in the cross-shelf and/or vertical directions, inconsistent with an alongshore propagating CTW. In the near-surface and near-bottom regions, the linear CTW solution also did not match the observed velocity, particularly within the bottom Ekman layer. Boundary layer processes were likely causing this observed inconsistency with linear CTW theory. As linear CTW solutions have an idealized representation of boundary dynamics, they should be cautiously applied on the shelf.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tamara Schlosser, tamara.schlosser@research.uwa.edu.au
Save
  • Alessi, C. A., and Coauthors, 1985: CODE-2: Moored array and large-scale data report. CODE Tech. Rep. 38/WHOI Tech. Rep. 85-35, 234 pp., https://doi.org/10.1575/1912/1641.

    • Crossref
    • Export Citation
  • Alford, M. H., and M. Whitmont, 2007: Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr., 37, 20222037, https://doi.org/10.1175/JPO3106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, H. L. Simmons, and J. D. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluteau, C. E., S.-L. Smith, G. N. Ivey, T. L. Schlosser, and N. L. Jones, 2016: Assessing the relationship between bed shear stress estimates and observations of sediment resuspension in the ocean. 20th Australasian Fluid Mechanics Conf., Perth, Australia, Australasian Fluid Mechanics Society, 473, https://people.eng.unimelb.edu.au/imarusic/proceedings/20/473%20Paper.pdf.

  • Boettger, D., R. Robertson, and L. Rainville, 2015: Characterizing the semidiurnal internal tide off Tasmania using glider data. J. Geophys. Res. Oceans, 120, 37303746, https://doi.org/10.1002/2015JC010711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2006: Coastal-trapped waves with finite bottom friction. Dyn. Atmos. Oceans, 41, 172190, https://doi.org/10.1016/j.dynatmoce.2006.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brink, K. H., 2018: Stable coastal-trapped waves with stratification, topography and mean flow. Woods Hole Open Access Server, https://doi.org/10.1575/1912/10527.

    • Crossref
    • Export Citation
  • Brink, K. H., and S. J. Lentz, 2010: Buoyancy arrest and bottom Ekman transport. Part II: Oscillating flow. J. Phys. Oceanogr., 40, 636655, https://doi.org/10.1175/2009JPO4267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cartwright, D. E., J. M. Huthnance, R. Spencer, and J. M. Vassie, 1980: On the St Kilda shelf tidal regime. Deep-Sea Res., 27A, 6170, https://doi.org/10.1016/0198-0149(80)90072-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, J. A., and H. J. Freeland, 1987: The energy source for the coastal-trapped waves in the Australian Coastal Experiment Region. J. Phys. Oceanogr., 17, 289300, https://doi.org/10.1175/1520-0485(1987)017<0289:TESFTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Codiga, D. L., and C. C. Eriksen, 1997: Observations of low-frequency circulation and amplified subinertial tidal currents at Cobb Seamount. J. Geophys. Res., 102, 22 99323 007, https://doi.org/10.1029/97JC01451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Codiga, D. L., D. P. Renouard, and A. M. Fincham, 1999: Experiments on waves trapped over the continental slope and shelf in a continuously stratified rotating ocean, and their incidence on a canyon. J. Mar. Res., 57, 585612, https://doi.org/10.1357/002224099321549602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, W. R., and R. E. Thomson, 1984: Diurnal-period continental shelf waves along Vancouver Island: A comparison of observations with theoretical models. J. Phys. Oceanogr., 14, 16291646, https://doi.org/10.1175/1520-0485(1984)014<1629:DPCSWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cresswell, G., 2000: Currents of the continental shelf and upper slope of Tasmania. Pap. Proc. Roy. Soc. Tasmania, 133 (3), 2130, https://doi.org/10.26749/rstpp.133.3.21.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and B. Jean-Marie, 2011: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. 2nd ed., International Geophysics Series, Vol. 101, Academic Press, 875 pp.

    • Crossref
    • Export Citation
  • Falahat, S., and J. Nycander, 2015: On the generation of bottom-trapped internal tides. J. Phys. Oceanogr., 45, 526545, https://doi.org/10.1175/JPO-D-14-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freeland, H. J., 1988: Diurnal coastal-trapped waves on the east Australian continental shelf. J. Phys. Oceanogr., 18, 690694, https://doi.org/10.1175/1520-0485(1988)018<0690:DCTWOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. International Geophysics Series, Vol. 30, Academic Press, 662 pp.

  • Goring, D. G., and V. I. Nikora, 2002: Despiking acoustic Doppler velocimeter data. J. Hydraul. Eng., 128, 117126, https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huthnance, J. M., 1978: On coastal trapped waves: Analysis and numerical calculation by inverse iteration. J. Phys. Oceanogr., 8, 7492, https://doi.org/10.1175/1520-0485(1978)008<0074:OCTWAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivey, G. N., C. E. Bluteau, and N. L. Jones, 2018: Quantifying diapycnal mixing in an energetic ocean. J. Geophys. Res. Oceans, 123, 346357, https://doi.org/10.1002/2017JC013242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnston, T. S., and D. L. Rudnick, 2015: Trapped diurnal internal tides, propagating semidiurnal internal tides, and mixing estimates in the California Current System from sustained glider observations, 2006–2012. Deep-Sea Res. II, 112, 6178, https://doi.org/10.1016/j.dsr2.2014.03.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., H. L. Simmons, D. Braznikov, S. Kelly, J. A. MacKinnon, M. H. Alford, R. Pinkel, and J. D. Nash, 2016: Reflection of linear internal tides from realistic topography: The Tasman continental slope. J. Phys. Oceanogr., 46, 33213337, https://doi.org/10.1175/JPO-D-16-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leblond, P. H., and L. A. Mysak, 1978: Waves in the Ocean. Elsevier, 602 pp.

  • Lilly, J. M., 2017: jLab: A data analysis package for Matlab, version 1.6.3. http://www.jmlilly.net/jmlsoft.html.

  • Mihanović, H., M. Orlić, and Z. Pasarić, 2009: Diurnal thermocline oscillations driven by tidal flow around an island in the Middle Adriatic. J. Mar. Syst., 78 (Suppl.), S157S168, https://doi.org/10.1016/j.jmarsys.2009.01.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424, https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musgrave, R. C., J. A. MacKinnon, R. Pinkel, A. F. Waterhouse, and J. D. Nash, 2016: Tidally driven processes leading to near-field turbulence in a channel at the crest of the mendocino escarpment. J. Phys. Oceanogr., 46, 11371155, https://doi.org/10.1175/JPO-D-15-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musgrave, R. C., J. A. MacKinnon, R. Pinkel, A. F. Waterhouse, J. D. Nash, and S. M. Kelly, 2017: The influence of subinertial internal tides on near-topographic turbulence at the mendocino ridge: Observations and modeling. J. Phys. Oceanogr., 47, 21392157, https://doi.org/10.1175/JPO-D-16-0278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mysak, L. A., 1980: Topographical trapped waves. Annu. Rev. Fluid Mech., 12, 4576, https://doi.org/10.1146/annurev.fl.12.010180.000401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliver, E. C. J., M. Herzfeld, and N. J. Holbrook, 2016: Modelling the shelf circulation off eastern Tasmania. Cont. Shelf Res., 130, 1433, https://doi.org/10.1016/j.csr.2016.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinkel, R., M. A. Goldin, J. A. Smith, O. M. Sun, A. A. Aja, M. N. Bui, and T. Hughen, 2011: The Wirewalker: A vertically profiling instrument carrier powered by ocean waves. J. Atmos. Oceanic Technol., 28, 426435, https://doi.org/10.1175/2010JTECHO805.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinkel, R., and Coauthors, 2015: Breaking internal tides keep the ocean in balance. Eos, Trans. Amer. Geophys. Union, 96, 15, https://doi.org/10.1029/2015EO039555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2001: Wirewalker: An autonomous wave-powered vertical profiler. J. Atmos. Oceanic Technol., 18, 10481051, https://doi.org/10.1175/1520-0426(2001)018<1048:WAAWPV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayson, M. D., G. N. Ivey, N. L. Jones, R. J. Lowe, G. W. Wake, and J. D. McConochie, 2015: Near-inertial ocean response to tropical cyclone forcing on the Australian North-West Shelf. J. Geophys. Res. Oceans, 120, 77227751, https://doi.org/10.1002/2015JC010868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, P., 1970: Edge-, bottom-, and Rossby waves in a rotating stratified fluid. Geophys. Fluid Dyn., 1, 273302, https://doi.org/10.1080/03091927009365776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridgway, K. R., 2007: Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett., 34, L13613, https://doi.org/10.1029/2007GL030393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shroyer, E. L., J. N. Moum, and J. D. Nash, 2011: Nonlinear internal waves over New Jersey’s continental shelf. J. Geophys. Res., 116, C03022, https://doi.org/10.1029/2010JC006332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51, 30433068, https://doi.org/10.1016/j.dsr2.2004.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15 46715 472, https://doi.org/10.1029/JC093iC12p15467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stashchuk, N., and V. Vlasenko, 2017: Bottom trapped internal waves over the Malin Sea continental slope. Deep-Sea Res. I, 119, 6880, https://doi.org/10.1016/j.dsr.2016.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, T., I. Yasuda, Y. Tanaka, and G. S. Carter, 2013: Numerical study on tidal mixing along the shelf break in the Green Belt in the southeastern Bering Sea. J. Geophys. Res. Oceans, 118, 65256542, https://doi.org/10.1002/2013JC009113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., J. A. Mackinnon, R. C. Musgrave, S. M. Kelly, A. Pickering, and J. Nash, 2017: Internal tide convergence and mixing in a submarine canyon. J. Phys. Oceanogr., 47, 303322, https://doi.org/10.1175/JPO-D-16-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2018: Observations of the Tasman Sea internal tide beam. J. Phys. Oceanogr., 48, 12831297, https://doi.org/10.1175/JPO-D-17-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilkin, J. L., and D. C. Chapman, 1990: Scattering of coastal-trapped waves by irregularities in coastline and topography. J. Phys. Oceanogr., 20, 396421, https://doi.org/10.1175/1520-0485(1990)020<0396:SOCTWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 490 165 12
PDF Downloads 513 125 4