• Alford, M. H., 2003: Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, https://doi.org/10.1029/2002GL016614.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., J. A. MacKinnon, H. P. Simmons, and J. D. Nash, 2016: Near-inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8, 95123, https://doi.org/10.1146/annurev-marine-010814-015746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansong, J. K., and B. R. Sutherland, 2010: Internal gravity waves generated by convective plumes. J. Fluid Mech., 648, 405434, https://doi.org/10.1017/S0022112009993193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, https://doi.org/10.1029/2012GL052932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, T., 1978: Radiation damping of inertial oscillations in the upper ocean. J. Fluid Mech., 88, 289308, https://doi.org/10.1017/S0022112078002116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., O. Pizarro, and W. Rojas, 2008: Global climatology of near-inertial current characteristics from Lagrangian observations. Geophys. Res. Lett., 35, L13603, https://doi.org/10.1029/2008GL034060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, T. L., T. Hauf, and J. P. Kuettner, 1986: Convectively forced internal gravity waves: Results from two-dimensional numerical experiments. Quart. J. Roy. Meteor. Soc., 112, 899925, https://doi.org/10.1002/qj.49711247402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426, https://doi.org/10.1017/S0022112076001420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15, 10431059, https://doi.org/10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., C. C. Eriksen, M. D. Levine, C. A. Paulson, P. Niiler, and P. V. Meurs, 1995: Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., 25, 29092936, https://doi.org/10.1175/1520-0485(1995)025<2909:UOICFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci., 27, 12111213, https://doi.org/10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29, 91115, https://doi.org/10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denbo, D. W., and E. D. Skyllingstad, 1996: An ocean large–eddy simulation model with application to deep convection in the Greenland Sea. J. Geophys. Res., 101, 10951110, https://doi.org/10.1029/95JC02828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dohan, K., and B. R. Sutherland, 2003: Internal waves generated from a turbulent mixed region. Phys. Fluids, 15, 488498, https://doi.org/10.1063/1.1530159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R., D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49, 14271442, https://doi.org/10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furuichi, N., T. Hibiya, and Y. Niwa, 2008: Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res., 113, C09034, https://doi.org/10.1029/2008JC004768.

    • Search Google Scholar
    • Export Citation
  • Gayen, B., S. Sarkar, and J. R. Taylor, 2010: Large eddy simulation of a stratified boundary layer under an oscillatory current. J. Fluid Mech., 643, 233266, https://doi.org/10.1017/S002211200999200X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1984: On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 11291151, https://doi.org/10.1175/1520-0485(1984)014<1129:OTBOIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1970: Wave-driven inertial oscillations. Geophys. Astrophys. Fluid Dyn., 1, 463502, https://doi.org/10.1080/03091927009365783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heitmann, S., and J. O. Backhaus, 2005: Large-eddy simulations of convective shear flows. Deep-Sea Res. II, 52, 11561180, https://doi.org/10.1016/j.dsr2.2005.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köhler, J., G. S. Völker, and M. Walter, 2018: Response of the internal wave field to remote wind forcing by tropical cyclones. J. Phys. Oceanogr., 48, 317328, https://doi.org/10.1175/JPO-D-17-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., and B. Fox-Kemper, 2017: Assessing the effects of Langmuir turbulence on the entrainment buoyancy flux in the ocean surface boundary layer. J. Phys. Oceanogr., 47, 28632886, https://doi.org/10.1175/JPO-D-17-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., C. N. Hill, L. Perelman, and A. J. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 57335752, https://doi.org/10.1029/96JC02776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, J.-H. Liang, and P. P. Sullivan, 2012: The wavy Ekman layer: Langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr., 42, 17931816, https://doi.org/10.1175/JPO-D-12-07.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear-and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polton, J. A., and S. E. Belcher, 2007: Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res., 112, C09020, https://doi.org/10.1029/2007JC004205.

    • Search Google Scholar
    • Export Citation
  • Polton, J. A., J. A. Smith, J. A. MacKinnon, and A. E. Tejada-Martínez, 2008: Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer. Geophys. Res. Lett., 35, L13602, https://doi.org/10.1029/2008GL033856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1983: Internal wave wake of a moving storm. Part I: Scales, energy budget and observations. J. Phys. Oceanogr., 13, 949965, https://doi.org/10.1175/1520-0485(1983)013<0949:IWWOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rath, W., R. J. Greatbatch, and X. Zhai, 2013: Reduction of near-inertial energy through the dependence of wind stress on the ocean-surface velocity. J. Geophys. Res. Oceans, 118, 27612773, https://doi.org/10.1002/jgrc.20198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rimac, A., J.-S. von Storch, and C. Eden, 2016: The total energy flux leaving the ocean’s mixed layer. J. Phys. Oceanogr., 46, 18851900, https://doi.org/10.1175/JPO-D-15-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and U. Schumann, 1989: Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech., 200, 511562, https://doi.org/10.1017/S0022112089000753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., and M. H. Alford, 2012: Simulating the long-range swell of internal waves generated by ocean storms. Oceanography, 25 (2), 3041, https://doi.org/10.5670/oceanog.2012.39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 85018522, https://doi.org/10.1029/94JC03202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276, https://doi.org/10.1007/BF00713741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452, https://doi.org/10.1017/S002211200700897X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutherland, B. R., 2010: Internal Gravity Waves. Cambridge University Press, 377 pp.

    • Crossref
    • Export Citation
  • Sutherland, B. R., and P. F. Linden, 1998: Internal wave excitation from stratified flow over a thin barrier. J. Fluid Mech., 377, 223252, https://doi.org/10.1017/S0022112098003048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, N., and B. Fox-Kemper, 2016: Understanding stokes forces in the wave-averaged equations. J. Geophys. Res. Oceans, 121, 35793596, https://doi.org/10.1002/2015JC011566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sykes, R. I., and D. S. Henn, 1989: Large-eddy simulation of turbulent sheared convection. J. Atmos. Sci., 46, 11061118, https://doi.org/10.1175/1520-0469(1989)046<1106:LESOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and S. Sarkar, 2007: Internal gravity waves generated by a turbulent bottom Ekman layer. J. Fluid Mech., 590, 331354, https://doi.org/10.1017/S0022112007008087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Roekel, L. P., B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, https://doi.org/10.1029/2011JC007516.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 1239, https://doi.org/10.1029/2001GL014422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., and T. M. Dillon, 1991: Internal waves and mixing in the upper equatorial pacific ocean. J. Geophys. Res., 96, 71157125, https://doi.org/10.1029/90JC02727.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 128 128 12
PDF Downloads 87 87 13

Internal Wave Radiation through Surface Mixed Layer Turbulence

View More View Less
  • 1 Institut fur Meereskunde, Hamburg, Germany
© Get Permissions
Restricted access

Abstract

In a series of large-eddy simulations with different forcing, we study the generation of internal gravity waves at the base of the surface mixed layer. If turbulent eddies act as obstacles and undulate the base of the mixed layer, horizontal velocities associated with inertial oscillations and Ekman dynamics can move the obstacles relative to the stratified interior, exciting internal gravity waves similar to lee waves. We find strong evidence that the “obstacle mechanism” is able to excite large parts of the internal wave spectrum, including near inertial waves. The high-frequency part of the excited wave spectrum is filtered by the increased stratification in the transition layer between the mixed layer and lower stratified interior, but a substantial part of the wave spectrum is able to overcome this barrier, hence contributing to interior mixing. The magnitude of the downward-radiated energy below the transition layer depends on the source of turbulence, but we show that the obstacle mechanism, especially under destabilizing heat fluxes, has the potential to contribute considerably to the internal wave energy in the interior ocean.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lars Czeschel, lars.czeschel@uni-hamburg.de

Abstract

In a series of large-eddy simulations with different forcing, we study the generation of internal gravity waves at the base of the surface mixed layer. If turbulent eddies act as obstacles and undulate the base of the mixed layer, horizontal velocities associated with inertial oscillations and Ekman dynamics can move the obstacles relative to the stratified interior, exciting internal gravity waves similar to lee waves. We find strong evidence that the “obstacle mechanism” is able to excite large parts of the internal wave spectrum, including near inertial waves. The high-frequency part of the excited wave spectrum is filtered by the increased stratification in the transition layer between the mixed layer and lower stratified interior, but a substantial part of the wave spectrum is able to overcome this barrier, hence contributing to interior mixing. The magnitude of the downward-radiated energy below the transition layer depends on the source of turbulence, but we show that the obstacle mechanism, especially under destabilizing heat fluxes, has the potential to contribute considerably to the internal wave energy in the interior ocean.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lars Czeschel, lars.czeschel@uni-hamburg.de
Save