• Bernie, D. J., S. J. Woolnough, J. M. Slingo, and E. Guilyardi, 2005: Modeling diurnal and intraseasonal variability of the ocean mixed layer. J. Climate, 18, 11901202, https://doi.org/10.1175/JCLI3319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. a., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ezer, T., 2000: On the seasonal mixed layer simulated by a basin-scale ocean model and the Mellor-Yamada turbulence scheme. J. Geophys. Res., 105, 16 84316 856, https://doi.org/10.1029/2000JC900088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerbi, G. P., J. H. Trowbridge, E. A. Terray, A. J. Plueddemann, and T. Kukulka, 2009: Observations of turbulence in the ocean surface boundary layer: Energetics and transport. J. Phys. Oceanogr., 39, 10771096, https://doi.org/10.1175/2008JPO4044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goh, G., and Y. Noh, 2013: Influence of the Coriolis force on the formation of a seasonal thermocline. Ocean Dyn., 63, 10831092, https://doi.org/10.1007/s10236-013-0645-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 18711887, https://doi.org/10.1175/2009JPO4119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guemas, V., D. Salas-Mélia, M. Kageyama, H. Giordani, and A. Voldoire, 2013: Impact of the ocean diurnal cycle on the North Atlantic mean sea surface temperatures in a regionally coupled model. Dyn. Atmos. Oceans, 60, 2845, https://doi.org/10.1016/j.dynatmoce.2013.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562, https://doi.org/10.1175/2007JPO3842.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842, https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Ohira, K. Sato, and T. Suga, 2010: Improved description of global mixed-layer depth using Argo profiling floats. J. Oceanogr., 66, 773787, https://doi.org/10.1007/s10872-010-0063-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, S., M. Nonaka, T. Tomita, B. Taguchi, H. Tomita, and N. Iwasaka, 2015: Impact of downward heat penetration below the shallow seasonal thermocline on the sea surface temperature. J. Oceanogr., 71, 541556, https://doi.org/10.1007/s10872-015-0275-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C. J., F. Qiao, and D. Dai, 2014: Evaluating CMIP5 simulations of mixed layer depth during summer. J. Geophys. Res., 119, 25682582, https://doi.org/10.1002/2013JC009535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ide, Y., and Y. Yoshikawa, 2016: Effects of diurnal cycle of surface heat flux on wind-driven flow. J. Oceanogr., 72, 263280, https://doi.org/10.1007/s10872-015-0328-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., T. J. McDougall, D. G. Wright, and S. M. Griffies, 2006: Algorithms for density, potential temperature, conservative temperature, and the freezing temperature of seawater. J. Atmos. Oceanic Technol., 23, 17091728, https://doi.org/10.1175/JTECH1946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2000: Efficient and accurate bulk parameterizations of air–sea fluxes for use in general circulation models. J. Atmos. Oceanic Technol., 17, 14211438, https://doi.org/10.1175/1520-0426(2000)017<1421:EAABPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., J. J. Hack, and J. W. Hurrell, 1998: The energy budget of the NCAR Community Climate Model: CCM3. J. Climate, 11, 11511178, https://doi.org/10.1175/1520-0442(1998)011<1151:TEBOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and J. M. Caron, 2015: Diurnal cycling of sea surface temperature, salinity, and current in the CESM coupled climate model. J. Geophys. Res., 120, 37113729, https://doi.org/10.1002/2014JC010691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. Mcwilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, W. Wang, and M. Ravichandran, 2016: Intraseasonal variability of sst and precipitation in the Arabian Sea during the Indian summer monsoon: Impact of ocean mixed layer depth. J. Climate, 29, 78897910, https://doi.org/10.1175/JCLI-D-16-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.

  • Marshall, J. C., R. G. Williams, and A. J. G. Nurser, 1993: Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr., 23, 13151329, https://doi.org/10.1175/1520-0485(1993)023<1315:ITSRAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., P. P. Sullivan, and C. H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130, https://doi.org/10.1017/S0022112096004375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., and Y. Choi, 2018: Reply to “Comments on ‘Langmuir turbulence and surface heating in the ocean surface boundary layer.”’ J. Phys. Oceanogr., 48, 455458, https://doi.org/10.1175/JPO-D-17-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., H. S. Min, and S. Raasch, 2004: Large eddy simulation of the ocean mixed layer: the effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr., 34, 720735, https://doi.org/10.1175/1520-0485(2004)034<0720:LESOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., G. Goh, S. Raasch, and M. Gryschka, 2009: Formation of a diurnal thermocline in the ocean mixed layer simulated by LES. J. Phys. Oceanogr., 39, 12441257, https://doi.org/10.1175/2008JPO4032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obata, A., J. Ishizaka, and M. Endoh, 1996: Global verification of critical depth theory for phytoplankton bloom with climatological in situ temperature and satellite ocean color data. J. Geophys. Res., 101, 20 65720 667, https://doi.org/10.1029/96JC01734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. O. R. Y. Thompson, 1972: The deepening of the wind-mixed layer. Geophys. Fluid Dyn., 4, 381401, https://doi.org/10.1080/03091927208236105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 8411, https://doi.org/10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. K., 1977: On estimating insolation over the ocean. J. Phys. Oceanogr., 7, 482485, https://doi.org/10.1175/1520-0485(1977)007<0482:OEIOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M., Y. Tanimoto, B. Preethi, P. Terray, and R. Krishnan, 2013: Intraseasonal SST-precipitation relationship and its spatial variability over the tropical summer monsoon region. Climate Dyn., 41, 4561, https://doi.org/10.1007/s00382-012-1547-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seckel, G. R., and F. H. Beaudry, 1973: The radiation from sun and sky over the North Pacific Ocean. Eos, Trans. Amer. Geophys. Union, 54 (11), 1114, https://doi.org/10.1029/EO054i011p01060.

    • Search Google Scholar
    • Export Citation
  • Sutherland, G., G. Reverdin, L. Marié, and B. Ward, 2014: Mixed and mixing layer depths in the ocean surface boundary. Geophys. Res. Lett., 41, 84698476, https://doi.org/10.1002/2014GL061939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sverdrup, H., 1953: On conditions for the vernal blooming of phytoplankton. ICES J. Mar. Sci., 18, 287295, https://doi.org/10.1093/icesjms/18.3.287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomita, H., T. Hihara, S. Kako, M. Kubota, and K. Kutsuwada, 2019: An introduction to J-OFURO3, a third-generation Japanese ocean flux data set using remote-sensing observations. J. Oceanogr., 75, 171194, https://doi.org/10.1007/s10872-018-0493-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Roekel, L. P., B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001, https://doi.org/10.1029/2011JC007516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., F. Vitart, and M. Balmaseda, 2007: The role of the ocean in the Madden-Julian Oscillation: Implications for MJOprediction. Quart. J. Roy. Meteor. Soc., 133, 117128, https://doi.org/10.1002/qj.4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshikawa, Y., 2015: Scaling surface mixing/mixed layer depth under stabilizing buoyancy flux. J. Phys. Oceanogr., 45, 247258, https://doi.org/10.1175/JPO-D-13-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Z. Gao, D. Li, Y. Li, N. Zhang, X. Zhao, and J. Chen, 2014: On the computation of planetary boundary-layer height using the bulk Richardson number method. Geosci. Model Dev., 7, 25992611, https://doi.org/10.5194/gmd-7-2599-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1972: On the determination of the height of the Ekman boundary layer. Bound.-Layer Meteor., 3, 141145, https://doi.org/10.1007/BF02033914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., A. Baklanov, J. Rost, A.-s. Smedman, V. Lykosov, and P. Calanca, 2002: Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer. Quart. J. Roy. Meteor. Soc., 128, 2546, https://doi.org/10.1256/00359000260498770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., I. Esau, and A. Baklanov, 2007: Further comments on the equiliburium height of neutral and stable planetary boundary layer. Quart. J. Roy. Meteor. Soc., 133, 265271, https://doi.org/10.1002/qj.27.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 61 61 14
PDF Downloads 47 47 10

Mixed Layer Depth and Sea Surface Warming under Diurnally Cycling Surface Heat Flux in the Heating Season

View More View Less
  • 1 Graduate School of Science, Kyoto University, Kyoto, Japan
© Get Permissions
Restricted access

Abstract

In the present study, large-eddy simulations (LESs) were performed to investigate mixed layer depth (MLD) and sea surface warming (SSW) under diurnally cycling surface heat flux in the heating season, in which a mixed layer (ML) is shoaling on intraseasonal time scales. The LES results showed that the diurnal cycle makes the MLD greater (smaller) at lower (higher) latitudes than the MLD without the cycle. Time scales of the wind-induced shear and the surface heat are a key to understand this latitudinal dependence of the diurnal cycle effects. The wind-induced shear-driven turbulence developed from early morning and became strongest at half the inertial period (Ti/2), while nighttime cooling weakened the ML stratification until the end of the nighttime (T24 = 24 h). At lower latitudes where Ti/2 > T24 (lower than 15°), the shear-driven turbulence continued to grow after T24 and determined the time of the greatest MLD. Thus, the shear-driven turbulence shaped the latitudinal dependence of the MLD, though convective turbulence helped further deepening of the ML. At higher latitudes (Ti/2 < T24), on the other hand, the shear-driven turbulence ceased growing before the nighttime cooling ended. However, reduced stratification due to the nighttime cooling supported the shear-driven turbulence to continue deepening the ML. Thus, the nighttime cooling shaped the latitudinal dependence of the MLD at higher latitudes. The MLD change induced by the diurnal cycle altered the SSW rate. At higher latitudes, the diurnal cycle is expected to reduce the MLD and increase the SSW by 10% in the heating season.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yusuke Ushijima, usijimay@kugi.kyoto-u.ac.jp

Abstract

In the present study, large-eddy simulations (LESs) were performed to investigate mixed layer depth (MLD) and sea surface warming (SSW) under diurnally cycling surface heat flux in the heating season, in which a mixed layer (ML) is shoaling on intraseasonal time scales. The LES results showed that the diurnal cycle makes the MLD greater (smaller) at lower (higher) latitudes than the MLD without the cycle. Time scales of the wind-induced shear and the surface heat are a key to understand this latitudinal dependence of the diurnal cycle effects. The wind-induced shear-driven turbulence developed from early morning and became strongest at half the inertial period (Ti/2), while nighttime cooling weakened the ML stratification until the end of the nighttime (T24 = 24 h). At lower latitudes where Ti/2 > T24 (lower than 15°), the shear-driven turbulence continued to grow after T24 and determined the time of the greatest MLD. Thus, the shear-driven turbulence shaped the latitudinal dependence of the MLD, though convective turbulence helped further deepening of the ML. At higher latitudes (Ti/2 < T24), on the other hand, the shear-driven turbulence ceased growing before the nighttime cooling ended. However, reduced stratification due to the nighttime cooling supported the shear-driven turbulence to continue deepening the ML. Thus, the nighttime cooling shaped the latitudinal dependence of the MLD at higher latitudes. The MLD change induced by the diurnal cycle altered the SSW rate. At higher latitudes, the diurnal cycle is expected to reduce the MLD and increase the SSW by 10% in the heating season.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yusuke Ushijima, usijimay@kugi.kyoto-u.ac.jp
Save