• Andreas, E. L, 1998: A new sea spray generation function for wind speeds up to 32 m s−1. J. Phys. Oceanogr., 28, 21752184, https://doi.org/10.1175/1520-0485(1998)028<2175:ANSSGF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, and J. Decosmo, 1999: Sea spray production and influence on air-sea heat and moisture fluxes over the open ocean. Air-Sea Exchange: Physics, Chemistry and Dynamics, G. L. Geernaert, Ed., Springer, 327–362.

    • Crossref
    • Export Citation
  • Andreas, E. L, and J. Decosmo, 2002: The signature of sea spray in the hexos turbulent heat flux data. Bound.-Layer Meteor., 103, 303333, https://doi.org/10.1023/A:1014564513650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, L. Mahrt, and D. Vickers, 2015: An improved bulk air–sea surface flux algorithm, including spray-mediated transfer. Quart. J. Roy. Meteor. Soc., 141, 642654, https://doi.org/10.1002/qj.2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anguelova, M., R. P. Barber, and J. Wu, 1999: Spume drops produced by the wind tearing of wave crests. J. Phys. Oceanogr., 29, 11561165, https://doi.org/10.1175/1520-0485(1999)029<1156:SDPBTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., J. M. Wilczak, J.-K. Choi, and L. H. Kantha, 2000: Numerical simulations of air–sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 21902210, https://doi.org/10.1175/1520-0493(2000)128<2190:NSOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., C. W. Fairall, S. A. Michelson, and L. Bianco, 2011: Parameterizations of sea-spray impact on the air–sea momentum and heat fluxes. Mon. Wea. Rev., 139, 37813797, https://doi.org/10.1175/MWR-D-11-00007.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barenblatt, G. I., and G. S. Golitsyn, 1974: Local structure of mature dust storms. J. Atmos. Sci., 31, 19171933, https://doi.org/10.1175/1520-0469(1974)031<1917:LSOMDS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air-sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, C. M., and S. A. Orszag, 1999: Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory. Springer, 593 pp.

    • Crossref
    • Export Citation
  • Bianco, L., J.-W. Bao, C. W. Fairall, and S. A. Michelson, 2011: Impact of sea-spray on the atmospheric surface layer. Bound.-Layer Meteor., 140, 361381, https://doi.org/10.1007/s10546-011-9617-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes. Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bortkovskii, R. S., 1987: Air-Sea Exchange of Heat and Moisture During Storms. E. C. Monahan, Ed., Springer, 194 pp.

    • Crossref
    • Export Citation
  • Chen, Y., and X. Yu, 2016: Enhancement of wind stress evaluation method under storm conditions. Climate Dyn., 47, 38333843, https://doi.org/10.1007/s00382-016-3044-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated ocean waves. Philos. Trans. Royal Soc. London, 315A, 509562, https://doi.org/10.1098/rsta.1985.0054.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. B. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat fluxes. J. Atmos. Sci., 64, 11031115, https://doi.org/10.1175/JAS3889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., S. Anquetin, P. G. Mestayer, and J. F. Sini, 1996: Spray droplet modeling: 2. An interactive Eulerian-Lagrangian model of evaporating spray droplets. J. Geophys. Res., 101, 12791293, https://doi.org/10.1029/95JC03280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026, https://doi.org/10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Atmos. Ocean Syst., 2, 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. F. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., M. L. Banner, W. L. Peirson, W. Asher, and R. P. Morison, 2009: Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res., 114, C10001, https://doi.org/10.1029/2008JC004918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, J. S., W. M. Frank, and Y. Kwon, 2008: Effects of sea spray on tropical cyclones simulated under idealized conditions. Mon. Wea. Rev., 136, 16861705, https://doi.org/10.1175/2007MWR2183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, H., Q. Wu, D. Chen, J. Sun, C. Liang, W. Lin, and Y. Xu, 2018: Effects of surface waves and sea spray on air-sea fluxes during the passage of typhoon Hagupit. Acta Oceanol. Sin., 37 (5), 17, https://doi.org/10.1007/s13131-018-1208-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jakobsen, H., 2008: Chemical Reactor Modeling: Multiphase Reactive Flows. Springer, 1244 pp.

  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 17071709, https://doi.org/10.1126/science.1136466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeong, D., B. K. Haus, and M. A. Donelan, 2012: Enthalpy transfer across the air–water interface in high winds including spray. J. Atmos. Sci., 69, 27332748, https://doi.org/10.1175/JAS-D-11-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1999: Ocean spray and the thermodynamics of tropical cyclones. J. Eng. Math., 35, 1142, https://doi.org/10.1023/A:1004383430896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, S. C., and T. W. Kao, 1976: Parameterization of the moisture and heat transfer process over the ocean under whitecap sea states. J. Phys. Oceanogr., 6, 306315, https://doi.org/10.1175/1520-0485(1976)006<0306:POTMAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaritz, L., M. Pinsky, O. Krasnov, and A. Khain, 2009: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part II: Lucky parcels. J. Atmos. Sci., 66, 781805, https://doi.org/10.1175/2008JAS2789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Makin, V. K., 1998: Air-sea exchange of heat in the presence of wind waves and spray. J. Geophys. Res., 103, 11371152, https://doi.org/10.1029/97JC02908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., 1986: The ocean as a source for atmospheric particles. The Role of Air-Sea Exchange in Geochemical Cycling, Springer, 129–163.

    • Crossref
    • Export Citation
  • Mueller, J. A., and F. Veron, 2014: Impact of sea spray on air–sea fluxes. Part I: Results from stochastic simulations of sea spray drops over the ocean. J. Phys. Oceanogr., 44, 28172834, https://doi.org/10.1175/JPO-D-13-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortiz-Suslow, D. G., B. K. Haus, S. Mehta, and N. J. M. Laxague, 2016: Sea spray generation in very high winds. J. Atmos. Sci., 73, 39753995, https://doi.org/10.1175/JAS-D-15-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulsen, W., 2013: Asymptotic Analysis and Perturbation Theory. Chapman and Hall, 550 pp.

    • Crossref
    • Export Citation
  • Peng, T., and D. Richter, 2017: Influence of evaporating droplets in the turbulent marine atmospheric boundary layer. Bound.-Layer Meteor., 165, 497518, https://doi.org/10.1007/s10546-017-0285-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perrie, W., W. Zhang, E. L. Andreas, W. Li, J. Gyakum, and R. McTaggart-Cowan, 2005: Sea spray impacts on intensifying midlatitude cyclones. J. Atmos. Sci., 62, 18671883, https://doi.org/10.1175/JAS3436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierson, W. J., Jr., and L. Moskowitz, 1964: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69, 51815190, https://doi.org/10.1029/JZ069i024p05181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., L. Mahgaritz, A. Khain, O. Krasnov, and A. Sterkin, 2008: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part I: Model description and first results in a nonmixing limit. J. Atmos. Sci., 65, 20642086, https://doi.org/10.1175/2007JAS2486.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rastigejev, Y., and S. A. Suslov, 2014: model of spray-laden near-sea atmospheric layer in high wind conditions. J. Phys. Oceanogr., 44, 742763., https://doi.org/10.1175/JPO-D-12-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rastigejev, Y., and S. A. Suslov, 2016: Two-temperature non-equilibrium model of a marine boundary layer laden with evaporating ocean spray under high-wind conditions. J. Phys. Oceanogr., 46, 30833102, https://doi.org/10.1175/JPO-D-16-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rastigejev, Y., S. A. Suslov, and Y.-L. Lin, 2011: Effect of ocean spray on vertical momentum transport under high-wind conditions. Bound.-Layer Meteor., 141, 120, https://doi.org/10.1007/s10546-011-9625-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, D. H., and D. P. Stern, 2014: Evidence of spray-mediated air-sea enthalpy flux within tropical cyclones. Geophys. Res. Lett., 41, 29973003, https://doi.org/10.1002/2014GL059746.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouault, M. P., P. G. Mestayer, and R. Schiestel, 1991: A model of evaporating spray droplet dispersion. J. Geophys. Res., 96, 71817200, https://doi.org/10.1029/90JC02569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shpund, J., M. Pinsky, and A. Khain, 2011: Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part I: The impact of large eddies. J. Atmos. Sci., 68, 23662384, https://doi.org/10.1175/2011JAS3652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shpund, J., J. A. Zhang, M. Pinsky, and A. Khain, 2012: Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part II: The role of sea spray. J. Atmos. Sci., 69, 35013514, https://doi.org/10.1175/JAS-D-11-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shpund, J., J. A. Zhang, M. Pinsky, and A. Khain, 2014: Microphysical structure of the marine boundary layer under strong wind and sea spray formation as seen from a 2D explicit microphysical model. Part III: Parameterization of height-dependent droplet size distribution. J. Atmos. Sci., 71, 19141934, https://doi.org/10.1175/JAS-D-12-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Atmospheric and Oceanographic Sciences Library, Vol. 13, Springer, 670 pp.

  • Tang, S., Z. Yang, C. Liu, Y. H. Dong, and L. Shen, 2017: Numerical study on the generation and transport of spume droplets in wind over breaking waves. Atmosphere, 8, https://doi.org/10.3390/atmos8120248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toffoli, A., A. V. Babanin, M. A. Donelan, B. K. Haus, and D. Jeong, 2011: Estimating sea spray concentration with the laser altimeter. J. Atmos. Oceanic Technol., 28, 11771183, https://doi.org/10.1175/2011JTECHO827.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. D. Kepert, and G. J. Holland, 2001: The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Mon. Wea. Rev., 129, 24812500, https://doi.org/10.1175/1520-0493(2001)129<2481:TEOSSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., 1993: Production of spume drops by the wind tearing of wave crests: The search for quantification. J. Geophys. Res., 98, 18 22118 227, https://doi.org/10.1029/93JC01834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., A. Rutgersson, E. Sahlee, and X. G. Larsen, 2015: The impact of waves and sea spray on modelling storm track and development. Tellus, 67A, 27967, https://doi.org/10.3402/tellusa.v67.27967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., J. Song, S. Li, and L. Yang, 2016: The effects of wind-driven waves and ocean spray on the drag coefficient and near-surface wind profiles over the ocean. Acta Oceanol. Sin., 35 (11), 7985, https://doi.org/10.1007/s13131-016-0950-6.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., and W. Perrie, 2008: The influence of air-sea roughness, sea spray, and storm translation speed on waves in North Atlantic storms. J. Phys. Oceanogr., 38, 817839, https://doi.org/10.1175/2007JPO3724.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 61 61 11
PDF Downloads 67 67 11

Effect of Evaporating Sea Spray on Heat Fluxes in a Marine Atmospheric Boundary Layer

View More View Less
  • 1 North Carolina A&T State University, Greensboro, North Carolina
  • 2 Swinburne University of Technology, Hawthorn, Victoria, Australia
© Get Permissions
Restricted access

Abstract

A detailed analysis of the evaporating ocean spray effect on the vertical latent and sensible heat fluxes in a marine atmospheric boundary layer (MABL) for different droplet sizes, vertical distributions of air temperature, humidity, and turbulent intensity is presented. For our analysis we have employed a two-temperature nonequilibrium MABL model developed in our previous work. The obtained analytical and numerical solutions show that the latent and total heat fluxes are significantly enhanced by large droplets because these droplets produce steep vertical gradients of moisture and air temperature in a MABL. Small droplets, however, do not noticeably change the total heat flux but rather redistribute the energy between its sensible and latent components. It has been shown that evaporating spray affects the turbulent kinetic energy (thus the intensity of the vertical turbulent transport) mostly mechanically by altering the vertical distribution of the mass density of the air–spray mixture rather than thermodynamically by changing vertical profiles of the air temperature and moisture. Furthermore, we have found that the vertical profiles of heat fluxes are approximately self-similar for a wide range of defining parameters, that is, can be approximately scaled to a reference heat profile for a wide range of vertical distributions of the temperature, humidity, and turbulence intensity. The obtained analytical expressions for the vertical heat fluxes affected by the spray presence enable their quick and efficient calculations. This will allow for the future construction of a computationally efficient spray and accurate parameterization to be used in global weather prediction models.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yevgenii Rastigejev, yarastig@ncat.edu

Abstract

A detailed analysis of the evaporating ocean spray effect on the vertical latent and sensible heat fluxes in a marine atmospheric boundary layer (MABL) for different droplet sizes, vertical distributions of air temperature, humidity, and turbulent intensity is presented. For our analysis we have employed a two-temperature nonequilibrium MABL model developed in our previous work. The obtained analytical and numerical solutions show that the latent and total heat fluxes are significantly enhanced by large droplets because these droplets produce steep vertical gradients of moisture and air temperature in a MABL. Small droplets, however, do not noticeably change the total heat flux but rather redistribute the energy between its sensible and latent components. It has been shown that evaporating spray affects the turbulent kinetic energy (thus the intensity of the vertical turbulent transport) mostly mechanically by altering the vertical distribution of the mass density of the air–spray mixture rather than thermodynamically by changing vertical profiles of the air temperature and moisture. Furthermore, we have found that the vertical profiles of heat fluxes are approximately self-similar for a wide range of defining parameters, that is, can be approximately scaled to a reference heat profile for a wide range of vertical distributions of the temperature, humidity, and turbulence intensity. The obtained analytical expressions for the vertical heat fluxes affected by the spray presence enable their quick and efficient calculations. This will allow for the future construction of a computationally efficient spray and accurate parameterization to be used in global weather prediction models.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yevgenii Rastigejev, yarastig@ncat.edu
Save