• Abkar, M., and P. Moin, 2017: Large-eddy simulation of thermally stratified atmospheric boundary-layer flow using a minimum dissipation model. Bound.-Layer Meteor., 165, 405419, https://doi.org/10.1007/s10546-017-0288-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abkar, M., H. J. Bae, and P. Moin, 2016: Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows. Phys. Rev. Fluids, 1, 041701, https://doi.org/10.1103/PhysRevFluids.1.041701.

    • Crossref
    • Export Citation
  • Alley, K. E., T. A. Scambos, M. R. Siegfried, and H. A. Fricker, 2016: Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nat. Geosci., 9, 290, https://doi.org/10.1038/ngeo2675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arzeno, I. B., R. C. Beardsley, R. Limeburner, B. Owens, L. Padman, S. R. Springer, C. L. Stewart, and M. J. Williams, 2014: Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica. J. Geophys. Res. Oceans, 119, 42144233, https://doi.org/10.1002/2014JC009792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Begeman, C. B., and Coauthors, 2018: Ocean stratification and low melt rates at the Ross Ice Shelf grounding zone. J. Geophys. Res. Oceans, 123, 74387452, https://doi.org/10.1029/2018JC013987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bradshaw, P., and G. P. Huang, 1995: The law of the wall in turbulent flow. Proc. Roy. Soc. London, 451A, 165188, https://doi.org/10.1098/rspa.1995.0122.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dean, R., 1978: Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J. Fluids Eng., 100, 215223, https://doi.org/10.1115/1.3448633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Determann, J., and R. Gerdes, 1994: Melting and freezing beneath ice shelves: Implications from a three-dimensional ocean-circulation model. Ann. Glaciol., 20, 413419, https://doi.org/10.1017/S0260305500016785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deusebio, E., C. P. Caulfield, and J. R. Taylor, 2015: The intermittency boundary in stratified plane Couette flow. J. Fluid Mech., 781, 298329, https://doi.org/10.1017/jfm.2015.497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eicken, H., H. Oerter, H. Miller, W. Graf, and J. Kipfstuhl, 1994: Textural characteristics and impurity content of meteoric and marine ice in the Ronne Ice Shelf, Antarctica. J. Glaciol., 40, 386398, https://doi.org/10.1017/S0022143000007474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flores, O., and J. J. Riley, 2011: Analysis of turbulence collapse in the stably stratified surface layer using direct numerical simulation. Bound.-Layer Meteor., 139, 241259, https://doi.org/10.1007/s10546-011-9588-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foken, T., 2006: 50 years of the Monin–Obukhov similarity theory. Bound.-Layer Meteor., 119, 431447, https://doi.org/10.1007/s10546-006-9048-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gayen, B., R. W. Griffiths, and R. C. Kerr, 2016: Simulation of convection at a vertical ice face dissolving into saline water. J. Fluid Mech., 798, 284298, https://doi.org/10.1017/jfm.2016.315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerland, S., J.-G. Winther, J. Børre Ørbæk, and B. V. Ivanov, 1999: Physical properties, spectral reflectance and thickness development of first year fast ice in Kongsfjorden, Svalbard. Polar Res., 18, 275282, https://doi.org/10.1111/j.1751-8369.1999.tb00304.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grosfeld, K., R. Gerdes, and J. Determann, 1997: Thermohaline circulation and interaction between ice shelf cavities and the adjacent open ocean. J. Geophys. Res., 102, 15 59515 610, https://doi.org/10.1029/97JC00891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gudmundsson, G., 2013: Ice-shelf buttressing and the stability of marine ice sheets. Cryosphere, 7, 647655, https://doi.org/10.5194/tc-7-647-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harig, C., and F. J. Simons, 2015: Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains. Earth Planet. Sci. Lett., 415, 134141, https://doi.org/10.1016/j.epsl.2015.01.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hattermann, T., O. A. Nøst, J. M. Lilly, and L. H. Smedsrud, 2012: Two years of oceanic observations below the Fimbul Ice Shelf, Antarctica. Geophys. Res. Lett., 39, L12605, https://doi.org/10.1029/2012GL051012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, D. M., and A. Jenkins, 1999: Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29, 17871800, https://doi.org/10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobs, S., C. Giulivi, and P. Mele, 2002: Freshening of the Ross Sea during the late 20th century. Science, 297, 386389, https://doi.org/10.1126/science.1069574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 2011: Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41, 22792294, https://doi.org/10.1175/JPO-D-11-03.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 2016: A simple model of the ice shelf–ocean boundary layer and current. J. Phys. Oceanogr., 46, 17851803, https://doi.org/10.1175/JPO-D-15-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., and A. Bombosch, 1995: Modeling the effects of frazil ice crystals on the dynamics and thermodynamics of ice shelf water plumes. J. Geophys. Res., 100, 69676981, https://doi.org/10.1029/94JC03227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, A., K. W. Nicholls, and H. F. J. Corr, 2010: Observation and parameterization of ablation at the base of Ronne Ice Shelf, Antarctica. J. Phys. Oceanogr., 40, 22982312, https://doi.org/10.1175/2010JPO4317.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kader, B., and A. Yaglom, 1972: Heat and mass transfer laws for fully turbulent wall flows. Int. J. Heat Mass Transfer, 15, 23292351, https://doi.org/10.1016/0017-9310(72)90131-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J., J. Wyngaard, D. Haugen, O. Coté, Y. Izumi, S. Caughey, and C. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 21522169, https://doi.org/10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keitzl, T., J. P. Mellado, and D. Notz, 2016: Reconciling estimates of the ratio of heat and salt fluxes at the ice-ocean interface. J. Geophys. Res. Oceans, 121, 8419–8433, https://doi.org/10.1002/2016JC012018.

    • Crossref
    • Export Citation
  • Kerr, R. C., and C. D. McConnochie, 2015: Dissolution of a vertical solid surface by turbulent compositional convection. J. Fluid Mech., 765, 211228, https://doi.org/10.1017/jfm.2014.722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimura, S., K. W. Nicholls, and E. Venables, 2015: Estimation of ice shelf melt rate in the presence of a thermohaline staircase. J. Phys. Oceanogr., 45, 133148, https://doi.org/10.1175/JPO-D-14-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kimura, S., A. Jenkins, P. Dutrieux, A. Forryan, A. C. Naveira Garabato, and Y. Firing, 2016: Ocean mixing beneath Pine Island glacier ice shelf, West Antarctica. J. Geophys. Res. Oceans, 121, 84968510, https://doi.org/10.1002/2016JC012149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, https://doi.org/10.1146/annurev-fluid-010313-141354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, S., and P. Kauffman, 1977: An experimental and theoretical study of the turbulent and laminar convection generated under a horizontal ice sheet floating on warm salty water. J. Phys. Oceanogr., 7, 272283, https://doi.org/10.1175/1520-0485(1977)007<0272:AEATSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McConnochie, C., and R. Kerr, 2017: Testing a common ice-ocean parameterization with laboratory experiments. J. Geophys. Res. Oceans, 122, 59055915, https://doi.org/10.1002/2017JC012918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McConnochie, C., and R. Kerr, 2018: Dissolution of a sloping solid surface by turbulent compositional convection. J. Fluid Mech., 846, 563577, https://doi.org/10.1017/jfm.2018.282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 2008: Air-Ice-Ocean Interaction: Turbulent Ocean Boundary Layer Exchange Processes. Springer, 216 pp.

    • Crossref
    • Export Citation
  • McPhee, M. G., G. A. Maykut, and J. H. Morison, 1987: Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea. J. Geophys. Res., 92, 70177031, https://doi.org/10.1029/JC092iC07p07017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., J. Morison, and F. Nilsen, 2008: Revisiting heat and salt exchange at the ice-ocean interface: Ocean flux and modeling considerations. J. Geophys. Res., 113, C06014, https://doi.org/10.1029/2007JC004383.

    • Search Google Scholar
    • Export Citation
  • Mondal, M., B. Gayen, R. W. Griffiths, and R. C. Kerr, 2019: Ablation of sloping ice faces into polar seawater. J. Fluid Mech., 863, 545571, https://doi.org/10.1017/jfm.2018.970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Osnovnye zakonomernosti turbulentnogo peremesivanija v prizemnom sloe atmosfery (Basic laws of turbulent mixing in the surface layer of the atmosphere). Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Nicholls, K. W., S. Østerhus, K. Makinson, T. Gammelsrød, and E. Fahrbach, 2009: Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: A review. Rev. Geophys., 47, RG3003, https://doi.org/10.1029/2007RG000250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, K. W., K. Makinson, and E. Venables, 2012: Ocean circulation beneath Larsen C Ice Shelf, Antarctica from in situ observations. Geophys. Res. Lett., 39, L19608, https://doi.org/10.1029/2012GL053187.

    • Crossref
    • Export Citation
  • Obukhov, A. M., 1946: Turbulentnost’v temperaturnoj-neodnorodnoj atmosfere (turbulence in an atmosphere with a non-uniform temperature). Tr. Akad. Nauk. SSSR Inst. Teorel. Geofiz., 1, 95115.

    • Search Google Scholar
    • Export Citation
  • Oerter, H., J. Kipfstuhl, J. Determann, H. Miller, D. Wagenbach, A. Minikin, and W. Graft, 1992: Evidence for basal marine ice in the Filchner–Ronne Ice Shelf. Nature, 358, 399, https://doi.org/10.1038/358399a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orszag, S. A., 1971: Numerical simulation of incompressible flows within simple boundaries. I. Galerkin (spectral) representation. Stud. Appl. Math., 50, 293, https://doi.org/10.1002/sapm1971504293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 806 pp.

    • Crossref
    • Export Citation
  • Purkey, S. G., and G. C. Johnson, 2012: Global contraction of Antarctic Bottom Water between the 1980s and 2000s. J. Climate, 25, 58305844, https://doi.org/10.1175/JCLI-D-11-00612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., and S. S. Jacobs, 2002: Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science, 296, 20202023, https://doi.org/10.1126/science.1070942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rignot, E., and K. Steffen, 2008: Channelized bottom melting and stability of floating ice shelves. Geophys. Res. Lett., 35, L02503, https://doi.org/10.1029/2007GL031765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozema, W., H. J. Bae, P. Moin, and R. Verstappen, 2015: Minimum-dissipation models for large-eddy simulation. Phys. Fluids, 27, 085107, https://doi.org/10.1063/1.4928700.

    • Crossref
    • Export Citation
  • Rye, C. D., A. C. N. Garabato, P. R. Holland, M. P. Meredith, A. G. Nurser, C. W. Hughes, A. C. Coward, and D. J. Webb, 2014: Rapid sea-level rise along the Antarctic margins in response to increased glacial discharge. Nat. Geosci., 7, 732735, https://doi.org/10.1038/ngeo2230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlichting, H., and K. Gersten, 2003: Boundary-Layer Theory. Springer, 800 pp.

  • Schoof, C., 2007: Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. J. Geophys. Res., 112, F03S28, https://doi.org/10.1029/2006JF000664.

    • Search Google Scholar
    • Export Citation
  • Scotti, A., and B. White, 2016: The mixing efficiency of stratified turbulent boundary layers. J. Phys. Oceanogr., 46, 31813191, https://doi.org/10.1175/JPO-D-16-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sirevaag, A., 2009: Turbulent exchange coefficients for the ice/ocean interface in case of rapid melting. Geophys. Res. Lett., 36, L04606, https://doi.org/10.1029/2008GL036587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snow, K., S. Rintoul, B. Sloyan, and A. M. Hogg, 2018: Change in dense shelf water and Adélie Land bottom water precipitated by iceberg calving. Geophys. Res. Lett., 45, 23802387, https://doi.org/10.1002/2017GL076195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanton, T. P., and Coauthors, 2013: Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier. Science, 341, 12361239, https://doi.org/10.1126/science.1239373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., 2008: Numerical simulations of the stratified oceanic bottom boundary layer. Ph.D. thesis, University of California, San Diego, 212 pp., https://escholarship.org/uc/item/5s30n2ts.

  • Vancoppenolle, M., C. M. Bitz, and T. Fichefet, 2007: Summer landfast sea ice desalination at Point Barrow, Alaska: Modeling and observations. J. Geophys. Res., 112, C04022, https://doi.org/10.1029/2006JC003493.

    • Search Google Scholar
    • Export Citation
  • Verstappen, R., 2016: How much eddy dissipation is needed to counterbalance the nonlinear production of small, unresolved scales in a large-eddy simulation of turbulence? Comput. Fluids, 176, 276284, https://doi.org/10.1016/j.compfluid.2016.12.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vreugdenhil, C. A., and J. R. Taylor, 2018: Large-eddy simulations of stratified plane Couette flow using the anisotropic minimum-dissipation model. Phys. Fluids, 30, 085104, https://doi.org/10.1063/1.5037039.

    • Crossref
    • Export Citation
  • Williams, M., R. Warner, and W. Budd, 1998: The effects of ocean warming on melting and ocean circulation under the Amery Ice Shelf, East Antarctica. Ann. Glaciol., 27, 7580, https://doi.org/10.3189/1998AoG27-1-75-80.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 406 pp.

    • Crossref
    • Export Citation
  • Yaglom, A., and B. Kader, 1974: Heat and mass transfer between a rough wall and turbulent fluid flow at high Reynolds and Peclet numbers. J. Fluid Mech., 62, 601623, https://doi.org/10.1017/S0022112074000838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Q., J. R. Taylor, and C. P. Caulfield, 2017: Self-similar mixing in stratified plane Couette flow for varying Prandtl number. J. Fluid Mech., 820, 86120, https://doi.org/10.1017/jfm.2017.200.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 70 70 9
PDF Downloads 59 59 11

Stratification Effects in the Turbulent Boundary Layer beneath a Melting Ice Shelf: Insights from Resolved Large-Eddy Simulations

View More View Less
  • 1 University of Cambridge, Cambridge, United Kingdom
© Get Permissions
Restricted access

Abstract

Ocean turbulence contributes to the basal melting and dissolution of ice shelves by transporting heat and salt toward the ice. The meltwater causes a stable salinity stratification to form beneath the ice that suppresses turbulence. Here we use large-eddy simulations motivated by the ice shelf–ocean boundary layer (ISOBL) to examine the inherently linked processes of turbulence and stratification, and their influence on the melt rate. Our rectangular domain is bounded from above by the ice base where a dynamic melt condition is imposed. By varying the speed of the flow and the ambient temperature, we identify a fully turbulent, well-mixed regime and an intermittently turbulent, strongly stratified regime. The transition between regimes can be characterized by comparing the Obukhov length, which provides a measure of the distance away from the ice base where stratification begins to dominate the flow, to the viscous length scale of the interfacial sublayer. Upper limits on simulated turbulent transfer coefficients are used to predict the transition from fully to intermittently turbulent flow. The predicted melt rate is sensitive to the choice of the heat and salt transfer coefficients and the drag coefficient. For example, when coefficients characteristic of fully developed turbulence are applied to intermittent flow, the parameterized three-equation model overestimates the basal melt rate by almost a factor of 10. These insights may help to guide when existing parameterizations of ice melt are appropriate for use in regional or large-scale ocean models, and may also have implications for other ice–ocean interactions such as fast ice or drifting ice.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Catherine A. Vreugdenhil, c.a.vreugdenhil@damtp.cam.ac.uk

Abstract

Ocean turbulence contributes to the basal melting and dissolution of ice shelves by transporting heat and salt toward the ice. The meltwater causes a stable salinity stratification to form beneath the ice that suppresses turbulence. Here we use large-eddy simulations motivated by the ice shelf–ocean boundary layer (ISOBL) to examine the inherently linked processes of turbulence and stratification, and their influence on the melt rate. Our rectangular domain is bounded from above by the ice base where a dynamic melt condition is imposed. By varying the speed of the flow and the ambient temperature, we identify a fully turbulent, well-mixed regime and an intermittently turbulent, strongly stratified regime. The transition between regimes can be characterized by comparing the Obukhov length, which provides a measure of the distance away from the ice base where stratification begins to dominate the flow, to the viscous length scale of the interfacial sublayer. Upper limits on simulated turbulent transfer coefficients are used to predict the transition from fully to intermittently turbulent flow. The predicted melt rate is sensitive to the choice of the heat and salt transfer coefficients and the drag coefficient. For example, when coefficients characteristic of fully developed turbulence are applied to intermittent flow, the parameterized three-equation model overestimates the basal melt rate by almost a factor of 10. These insights may help to guide when existing parameterizations of ice melt are appropriate for use in regional or large-scale ocean models, and may also have implications for other ice–ocean interactions such as fast ice or drifting ice.

© 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Catherine A. Vreugdenhil, c.a.vreugdenhil@damtp.cam.ac.uk
Save